Тип трансформаторов для наружной установки



Основные типы силовых трансформаторов

Трансформаторы используются в электротехнике для преобразования переменного тока из одного напряжения в другое посредством электромагнитной индукции, с сохранением неизменной частоты при минимальных мощностных потерях.

Существуют различные типы трансформаторов по количеству фаз, числу обмоток, типу изоляции и виду охлаждения. Распространенная классификация устройств основана на том, куда погружается магнитная система (сердечник), то есть, по типу охлаждения. В этом случае выделяют трансформаторы:

  • Масляные – погружение сердечника происходит в трансформаторное масло с диэлектрическими свойствами (оно находится в корпусе прибора)
  • Сухие – в обмотку заливается эпоксидная смола
  • Жидкостные – в качестве охлаждающей среды используются различные органические жидкости, то есть негорючие диэлектрики

Охлаждение для всех трех видов трансформаторов имеет свои нюансы. Для вашего удобства мы свели их в таблицу:

Вид трансформатора Тип охлаждения Обозначение
Сухие Естественное воздушное – для открытого исполнения С
Аналогично – для защищенного исполнения СЗ
Аналогично – для герметичного исполнения СГ
Воздушное с дутьем СД
Масляные Естественная циркуляция воздуха и масла М
2 вида циркуляции – принудительная для воздуха и естественная для масла Д
2 вида циркуляции – естественная для воздуха и принудительная для масла МЦ
Принудительная циркуляция воздуха и масла ДЦ
2 вида циркуляции – принудительная для воды и естественная для масла МВ
Принудительная циркуляция воды и масла Ц
Жидкостные Естественное охлаждение – негорючий жидкий диэлектрик Н
Охлаждение негорючим жидким диэлектриком посредством дутья НД

Среди этих трех типов наиболее популярны последние. Почему – об этом вы можете прочесть здесь, в одном из наших материалов. Мы же расскажем об основных критериях классификации трансформаторов по типам и чуть подробнее остановимся на сухих разновидностях.

Основные параметры классификации трансформаторов

О нем мы частично упомянули выше. Видов охлаждения несколько:

  • М – масляное
  • Д – охлаждение в масляной среде + воздушное дутье
  • Ц – масляное охлаждение с принудительной циркуляцией
  • С – воздушное охлаждение (то есть, «сухие» трансформаторы)

Маркировка типов трансформаторов расшифровывается следующим образом:

  • Буквенное обозначение – кол-во фаз, тип охлаждения, число обмоток и вид переключения ответвлений. Также могут быть дополнительные буквенные маркировки, говорящие о специальных особенностях конкретного трансформатора
  • Номинальная мощность + класс напряжения
  • Последние 2 цифры года выпуска рабочих чертежей конкретного трансформатора
  • Климатическое исполнение и категория размещения по ГОСТ 15150-69

Далее мы перечислим другие основные параметры классификации:

  • Климатическое исполнение

Прибор бывает наружный или внутренний

  • Конструктивное исполнение и характер работы

На этом параметре стоит остановиться более подробно:

  1. Автотрансформаторы – одна обмотка с несколькими отводами, переключение между которыми позволяет получить разные показатели напряжения.
  2. Импульсные – преобразовывают импульсный сигнал незначительной продолжительности (около десятка микросекунд) с минимальным искажением.
  3. Разделительные – между первичной и вторичной обмоткой электрической связи нет, присутствует гальваническая развязка между входными и выходными цепями.
  4. Пик—трансформатор – применяется для управления полупроводниковыми электрическими устройствами типа тиристоров
  • Количество фаз

Трехфазные (наиболее распространенные) и однофазные.

2-х и 3-х обмоточные с расщепленной обмоткой или без неё

По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).

Понижающие (для низкого напряжения из высоковольтных линий) и повышающие (соответственно, наоборот)

Высоковольтный, низковольтный, высокопотенциальный

Стержневой, тороидальный, броневой

Всего выделяют 6 групп трансформаторов:

  • 1-я группа (изделия с мощностью до 100 кВА)
  • 2-я группа (диапазон мощности от 160 до 630 кВА)
  • 3-я группа (от 1000 до 6300 кВА)
  • 4-я группа (показатель мощности выше 10000 кВА)
  • 5-я группа (все трансформаторы с мощностью выше 40000 кВА)
  • 6-я группа (мощность от 100000 кВА)

Среди дополнительных критериев классификации стоит отметить наличие/отсутствие:

  • Наличие/отсутствие регулятора выходного напряжения.
  • Без расширителей, с азотной подушкой для защиты

Сухие трансформаторы

Несмотря на то, что масляные трансформаторы пользуются большой популярностью, широко востребованы силовые трансформаторы и сухого типа, в частности:

  • Силовые трехфазные с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)
  • Силовые трехфазный ТС и ТСЗ
  • Сухие ТС и ТСЗ
  • Трансформаторы собственных нужд (сухого типа) ТСКС

Назначение трехфазных сухих трансформаторов с воздушным охлаждением – преобразование электроэнергии в электросетях трехфазного переменного тока частотой 50 Гц. Предельная мощность сухих трансформаторов – 2500 кВА.

Такие трансформаторы монтируются на производстве и в общественных зданиях – на любых объектах, где действуют повышенные требования в области пожарной безопасности, взрывозащищенности и экологичности, то есть, где использование масляного трансформатора является потенциальным риском. Единственное неудобство от сухих приборов – повышенный шум при работе.

Источник

для наружной установки

Трансформаторы напряжения для наружной установки изготовляются на напряжение 110 кВ и выше и выполняются по каскадной схеме, так как применение обычной конструкции нецелесообразно в связи с тем, что при относительно малой мощности размеры этих трансформаторов чрезвычайно возросли бы из-за больших, вследствие высокого первичного напряжения, изоляционных расстояний. При этом масса таких трансформаторов напряжения возросла бы пропорционально более чем квадрату увеличения напряжения, поскольку их масса растет быстрее, чем масса силовых трансформаторов при увеличении напряжения.

Масляный трансформатор типа НКФ – 110 в фарфоровом кожухе состоит из двух каскадов, выполненных на одном общем магнитопроводе. Схема данного трансформатора напряжения приведена на рисунке 3.9.

Рисунок 3.9 – Схема трансформатора напряжения типа НКФ

Обмотка высокого напряжения разделена на две одинаковые последовательно соединенные секции, представляющие собой первый и второй каскады. На начало обмотки высшего напряжения первого каскада А подается напряжение, а конец обмотки второго каскада Х заземляется. Магнитопровод соединен с серединой обмотки высокого напряжения и находятся под напряжением, равным половине рабочего напряжения. Благодаря этому изоляция обмотки высокого напряжения каждого каскада выполняется на половину рабочего напряжения, что существенно уменьшает размеры и массу трансформатора. Обмотки каскадов трансформатора напряжения располагаются на противоположных стержнях двухстержневого магнитопровода, рисунок 3.9.

Читайте также:  Дачные туалеты с доставкой и установкой

В обоих каскадах ближними к сердечнику намотаны выравнивающие обмотки П1 и П2, а поверх них намотаны выравнивающие обмотки П1 и П2, а поверх них намотаны обмотки высокого напряжения (ВН). Обмотки ВН защищены электростатическими экранами Э. В первом каскаде, экран Э соединен с вводом ВН А, а во втором экран Э заземлен. Поверх заземленного второго экрана Э намотаны основная и дополнительная обмотки низкого напряжения.

Выравнивающие обмотки П1 и П2 включены параллельно и предназначены для равномерного распределения вторичной нагрузки между двумя каскадами трансформатора напряжения. При отсутствии нагрузки в выравнивающих обмотках тока нет, и по обмоткам высокого напряжения каждого каскада протекает только ток холостого хода. При включении нагрузки напряжение обмотки П2 из-за падения напряжения в обмотке высокого напряжения второго каскада уменьшается, вследствие чего по выравнивающим обмоткам П1 и П2 начинает циркулировать нагрузочный ток, который оказывает размагничивающее действие на обмотку высокого напряжения первого каскада. Значение нагрузочного тока таково, что первый каскад воспринимает на себя половину нагрузки. Таким образом, благодаря выравнивающим обмоткам нагрузка и напряжение распределяются поровну между двумя каскадами трансформатора напряжения.

Каскадный трансформатор напряжения типа НКФ – 110 помещается в изолированную фарфоровую покрышку, наполненную трансформаторным маслом, и представляет собой один блок. Сверху покрышка закрыта маслорасширителем, на котором имеются указатель уровня масла, контактная шпилька (ввод А) и пробка для дыхания. Снизу покрышка крепится на плите стальной подставки. Соединение фарфора покрышки со сталью плиты и расширителя осуществляется через уплотнительные прокладки из маслостойкой резины. На стальной подставке закрепляется коробка зажимов, на которую выводятся концы обмоток низкого напряжения а – х, ад – хд, болт заземления и заземленный конец Х обмотки высокого напряжения, и приварен патрубок со спускным краном для масла. Коробка зажимов закрывается дверцей, на которую прикреплен щиток с основными техническими данными трансформатора.

Трансформаторы напряжения типа НКФ выпускаются с классами точности 1 и 3. Чем выше напряжение, тем сложнее конструкция трансформатора напряжения. Трансформаторы напряжения на 220, 330 и 500 кВ состоят соответственно из двух, трёх и четырех каскадных блоков соединенных последовательно. Поэтому в установках 500 кВ и выше применяются трансформаторные устройства с емкостным отбором мощности, присоединенные к конденсаторам высокочастотной связи С1 с помощью конденсатора отбора мощности С2. Схема такого трансформатора приведена на рисунке 3.10.

Рисунок 3.10- Схема трансформатора напряжения типа НДЕ

Напряжение, снимаемое с конденсатора отбора мощности С2 подается на трансформатор напряжения TV, имеющий две вторичные обмотки, которые соединяются по такой же схеме, как и у трансформаторов НКФ.

Для увеличения точности работы емкостного делителя напряжения (НДЕ) в цепь первичной обмотки трансформатора TV. Включен дроссель L, с помощью которого контур отбора напряжения настраивается в резонанс с конденсатором С2. Дроссель L и трансформатор TV встраиваются в общий бак и заливаются маслом. Кроме того, между дросселем L и емкостным делителем включен высокочастотный заградитель Z1, который не пропускает токи высокой частоты в трансформатор TV.

При работе трансформатора TV на холостом ходу возникают феррорезонансные явления, характеризующиеся скачкообразными изменениями тока. Это приводит к резким повышениям напряжения и искажению формы кривой вторичного напряжения, которая в этом случае существенно отличается от синусоидальной.

Для предотвращения таких искажений и колебаний напряжения к выводам ах основной вторичной обмотки подключается противорезонансный фильтр Z2, рисунок 3.10.

В настоящее время выпускаются емкостные трансформаторы напряжения на 500 кВ (НДЕ – 500), на 750 кВ (НДЕ – 750) и на 1150 кВ (НДЕ 1150).

Источник

Отличительные особенности трансформаторов тока наружной установки

Трансформаторами тока наружной установки называются трансформаторы, предназначенные для работы в открытых распределительных устройствах при темпиратуре окружающего воздуха от – 40 до +35 и высоте установки над уровнем моря не выше 1000 м.

Трансформаторы этой группы изготовляютсяна наминальные напряжения от 35 до 500 кв включительно.

Все изготовляемые в Советском Союзе трансформаторы тока наружной установки являются маслонаполненными.

В качестве основной изоляции у них применяется кабельная бумага, пропитанная трансформаторным маслом.

Изолированные кабельной бумагой обмотки помещаются в фарфоровой покрышке, заполненой трансформаторным маслом.

Трансформаторы наружной установки можно разбить на две подгруппы, отличающиеся друг от друга конструкцией обмоток: трансформаторы тока с «восьмерочными» обмотками и трансформаторы тока с петлевой первичной обмоткой.

Петлевая форма первичной обмотки допускает применение изоляции конденсаторного типа, что позволяет уменьшить толщину изоляции обмоток.

Внутреняя полость большинства трансформаторовтока имеет непосредственное сообщение с наружным воздухомчерез особый дыхательный клапан, установленный на крышке трансформатора.

Некоторые конструкции трансформаторов, более чувствительные к увлажнению и старению масла(например, имеющие изоляцию конденсаторного типа), снабжаются силикагелевым влагопоглотителем, защищающим их от проникновения во внутреннюю полость влажного воздуха.

У всех трансформаторов тока наружной установки выводы первичной обмотки расположены в верхней части, а выводы вторичных обмоток – внизу, на боковых стенках цоколя.

Источник

Виды трансформаторов

В электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Читайте также:  Что нужно при установки забора

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

Энергетические системы, осуществляющие передачу и распределение электроэнергии, пользуются силовыми трансформаторами. С помощью этих устройств изменяются величины переменного тока и напряжения. Однако частота, количество фаз, кривая тока или напряжения, остаются в неизменном виде.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

В силовых трансформаторах при протекании через витки обмотки также создается переменный магнитный поток, возникающий в магнитопроводе. Под его влиянием в обеих обмотках индуктируется ЭДС. Выходное напряжение может быть выше или ниже первоначального, в зависимости от того, какой тип трансформатора используется – повышающий или понижающий. Значение ЭДС в каждой обмотке различается в соответствии с количеством витков. Таким образом, если создать определенное соотношение витков в обмотках, можно создать трансформатор с требуемым отношением входного и выходного напряжений.

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все трансформаторы разделяются на следующие виды:

  • По количеству фаз могут быть одно- или трехфазными.
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой.
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Условные обозначения трансформаторов

Каждый трансформатор имеет собственные условные обозначения, расшифровывающие основные технические характеристики и параметры устройства.

Буквенные символы обозначают следующее:

  • А – конструкция автотрансформатора.
  • О – однофазная модификация.
  • Т – трехфазное устройство, с наличием или отсутствием расщепления обмоток.

В соответствии с системой охлаждения, трансформаторы маркируются следующим образом:

  • Сухого типа: «С» – с естественным воздушным охлаждением, открытого исполнения; «СЗ» – то же самое, защищенного исполнения; «СГ» – то же самое, герметичного исполнения; «СД» – воздушное охлаждение с дутьем.
  • Масляное охлаждение: «М» – естественное; «МЗ» – естественное, с защитной азотной подушкой без расширителя; «Д» – дутье и естественная циркуляция масла; «ДЦ» – дутье и принудительная циркуляция масла; «Ц» – масляно-водяное охлаждение и принудительная циркуляция масла.
  • С использованием негорючего жидкого диэлектрика: «Н» и «НД» – естественное охлаждение и с применением дутья.

Существует множество других буквенных и цифровых обозначений. Правильно расшифровать их помогут специальные справочники и таблицы.

Масляные трансформаторы

Данный тип трансформаторов считается наиболее экономичным. Они лучше всего подходят для наружной установки. Внутри помещений они могут устанавливаться на уровне первого этажа, в специальных камерах с двумя наружными дверьми.

Эксплуатация масляных трансформаторов отличается специфическими особенностями. Они должны обязательно оборудоваться маслоприемными устройствами в виде ям или приямков, способных к сбору примерно 20-30% общего количества масла, залитого в трансформатор. Глубина таких ям должна быть не менее 1 м. Следует помнить, что масляные установки запрещается размещать в подвалах и на вторых этажах зданий.

Устройства с негорючим диэлектриком

Мощность таких установок составляет до 2500 кВА. Трансформаторы этого типа применяются в тех случаях, когда технические условия не допускают использования других устройств. Чаще всего это связано с условиями окружающей среды и недопустимостью открытой установки масляных трансформаторов.

Применение устройств с негорючим диэлектриком имеет серьезные ограничения в связи с высокой токсичностью совтола, используемого для охлаждения. Данная жидкость, обладая противопожарными и взрывобезопасными свойствами, может нанести серьезный вред человеческому организму, привести к раздражению носовых и глазных слизистых оболочек.

Основное преимущество этих устройств заключается в возможности их ввода в эксплуатацию без проведения предварительной ревизии. В процессе дальнейшей работы они не требуют обслуживания и ремонта.

Сухие трансформаторы

Виды трансформаторов

Максимальная мощность этих устройств также находится в пределах 2500 кВА. Они применяются в тех местах, где условия среды делают масляные трансформаторы пожароопасными, а трансформаторы с негорючей жидкостью – токсичными. Установка сухих трансформаторов производится в административные, общественные и другие здания, где возможно значительное скопление людей.

Рассматривая основные виды трансформаторов, следует отметить, что устройства сухого типа с небольшой мощностью могут размещаться внутри помещений и других закрытых местах. Это связано с тем, что им не требуются маслосборники и охлаждающая жидкость. Серьезным недостатком сухих трансформаторов считается наличие повышенного шума во время работы. Этот фактор нужно обязательно принимать во внимание при выборе места установки данных устройств.

Источник

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Читайте также:  Установка lut adobe premiere pro cc

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока
классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.
  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
    • До 1 кВ;
    • Свыше 1 кВ.

    Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

    Расшифровка маркировки

    Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

    • Т — трансформатор тока;
    • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
    • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
    • ВТ — встроенный в конструкцию силового трансформатора;
    • Л— со смоляной (литой) изоляцией;
    • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
    • Ф — с надежной фарфоровой изоляцией;
    • Ш — шинный;
    • О — одновитковый;
    • М — малогабаритный;
    • К — катушечный;
    • 3 — применяется для защиты от последствий замыкания на землю;
    • У — усиленный;
    • Н — для наружного монтажа;
    • Р — с сердечником, предназначенным для релейной защиты;
    • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
    • М — маслонаполненный. Применяется для наружной установки.
    1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
    2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
    3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
    4. после позиции дробных символов — код варианта конструкционного исполнения;
    5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
    6. цифра на последней позиции — категория размещения.

    Схемы подключения

    Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

    Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

    При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

    Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

    Источник

Adblock
detector