Работа с конденсаторными установками

Работа с конденсаторными установками

Самым дешёвым и одновременно самым эффективным средством повышения технико-экономических показателей электрических систем является компенсация реактивной мощности. Понятие источники реактивной мощности (ИРМ) обычно относят к любым устройствам, способным целенаправленно воздействовать на баланс реактивной мощности в электроэнергетической системе. В системах электроснабжения (СЭС) промышленных предприятий ИРМ применяют с целью компенсации реактивной мощности, потребляемой мощной резкопеременной нагрузкой, и симметрирования нагрузки. Ко второй группе ИРМ относятся статические компенсаторы реактивной мощности — конденсаторные батареи (КБ). Конденсаторные батареи способны регулировать генерируемую ими мощность только ступенчато. Для их коммутации (включения, выключения) применяют в сетях до 1 кВ — обычные контакторы, в сетях 6 — 10 кВ и выше — выключатели. Основная роль конденсаторных установок в сетях промышленных предприятий это снижение потерь электроэнергии в сетях и регулирование напряжения в допустимых пределах. Мощность, генерируемая КБ, при ее заданной ёмкостиС пропорциональна квадрату приложенного напряжения и его частоте QКБ = U 2 wС.Поэтому нерегулируемые КБ обладают отрицательным регулирующим эффектом. Это значит, что мощность КБ снижается со снижением приложенного напряжения, тогда как по условиям режима эту мощность необходимо увеличивать.

Современные конденсаторные установки допускают длительную работу при повышении действующего значения напряжения между выводами до 1,1 U ном, сети. Обеспечивают длительную работу без снижения срока службы при повышении действующего значения тока до 1,3 I ном., как за счёт повышения напряжения, так и за счёт высших гармоник или за счёт того и другого вместе независимо от гармонического состава тока. С учётом предельного отклонения ёмкости наибольший допустимый ток может быть до 1,43 I ном.конденсатора.Использование конденсаторных установок, являющихся наиболее распространённым средством компенсации реактивной мощности в промышленных сетях, даёт возможность:

— повышения коэффициента мощности до требуемой величины;

— уменьшения потерь электроэнергии в элементах сети электроснабжения;

— регулирования напряжения в различных точках сети;

— повышения качества электроэнергии.

Применение их позволяет:

— обеспечивать высокую точность заданного коэффициента мощности;

— поддерживать оптимальный режим компенсации реактивной мощности в зависимости от нагрузки;

— снижать тепловые потери в распределительных сетях и расходы на электроэнергию;

— снижать влияние высших гармонических составляющих тока на электрооборудование;

— разгружать оборудование подстанций и распределительных сетей, увеличивать срок его службы.

Нижеуказанные требованияраспространяются на конденсаторные установки напряжением от 0,22 до 10 кВ и частотой 50 Гц, предназначенные для компенсации реактивной мощности и регулирования напряжения и присоединяемые параллельно индуктивным элементам электрической сети. Конденсаторная установка должна находиться в техническом состоянии, обеспечивающем ее долговременную и надёжную работу. Управление конденсаторной установкой, регулирование режима работы батарей конденсаторов должно быть, как правило, автоматическим. Управление конденсаторной установкой, имеющей общий с индивидуальным приёмником электрической энергии коммутационный аппарат, может осуществляться вручную одновременно с включением или отключением приёмника электрической энергии.Кроме силовых конденсаторов, используемых для компенсации реактивной мощности, в электроэнергетике эксплуатируются конденсаторы связи, конденсаторы отбора мощности, конденсаторы для делителей напряжения, конденсаторы для повышения коэффициента мощности, конденсаторы установок продольной компенсации и конденсаторы, используемые для защиты от перенапряжений.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8841 — | 7555 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Конденсаторная установка – это электроустановка, которая состоит из конденсаторов и дополнительного электрооборудования, и применяется для компенсации реактивной мощности электрооборудования. Вследствие работы трансформаторов, электродвигателей, пусковых устройств, происходит производство, как активной энергии, так и реактивной.

Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.

Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.

Принцип действия

Конструкция конденсаторной установки выполнена в виде электроприбора, состоящего из конденсатора и дополнительного электрического оборудования. Данная установка предназначена для компенсации реактивной мощности оборудования, создающей электромагнитные поля и дополнительную нагрузку на электроприборы.

Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.

Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.

Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.

Назначение установок КРМ

Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.

Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.

Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами. Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.

Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.

Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения. В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.

Читайте также:  Шаг установки маяков при штукатурке

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные — используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные — имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

Назначение конденсаторных установок — повышение эффективности промышленной инфраструктуры, снижение стоимости электроэнергии и защита дорогостоящего оборудование от перегрузок. И они прекрасно справляются со своей задачей.

Энергоэффективность производственных электросетей

Относительно недавно необходимости в подобном оборудовании не существовало. Однако сейчас специалистов, задумывающихся о том, для чего нужны конденсаторные установки, практически не осталось. Слишком очевидна проблема дефицита качественной электроэнергии.

Количество потребителей лавинообразно растет, промышленное оборудование становится все более чувствительным к параметрам электроэнергии, однако морально устаревшие сети не справляются с нагрузкой ни по качественным, ни по количественным характеристикам. В процессе транспортировки электроэнергии и работы многих установок образуется не только активная, но и реактивная мощность. Часть мощности системы расходуется в пустую, повышая стоимость траспортировки ресурса, увеличивая его расход и перегружая систему. Для электрических сетях с реактивной мощностью характерны нагрев отдельных элементов, появление пробоев и перегрузок.

Чтобы избежать негативных последствий, необходимо вкладывать значительные средства в модернизацию сетей: увеличивать сечение кабелей, устанавливать трансформаторы и другое оборудование повышенной мощности. Однако есть более простое и эффективное решение.

Конденсаторные установки обладают целым рядом преимуществ:

  • Обеспечивают заметный эффект при низких стартовых затратах. При грамотном подходе каждая установка окупается в течение года.
  • Предельно просты при установке и в эксплуатации.
  • Подключаются именно там, где вам нужно.
  • Существуют решения для электросетей низкого, среднего и высокого напряжения.

Назначение конденсаторных установок

В зависимости от требований заказчика, КУ решают следующие задачи:

  • Снижают расход и стоимость потребляемой электроэнергии.
  • Гарантируют передачу ресурса по проводам меньшего сечения, без дорогостоящей модернизации всей электросети.
  • Стабилизируют параметры тока при транспортировке на большие расстояния. Предотвращают перепады напряжения на электросетях различного масштаба.
  • Защищают оборудование от перегрузок.
  • Повышают качество поставляемого ресурса.

Наиболее эффективны КУ на производствах с высоким содержанием асинхронных двигателей, силовых установок с cos φ = 0,7 и ниже, и т.д.

Принцип работы конденсаторной установки

В основе действия КУ эффект коммутируемой или динамической компенсации реактивной мощности системой конденсаторов, расположенных в определенной последовательности. Для коммутации в конденсаторной установке (принцип действия несколько отличается в каждом из указанных подвидов) используются контакторы или тиристоры. В первом случае, коммутация происходит за счет электромеханического реле, что характерно для подавляющего большинства КУ. К их преимуществам следует отнести низкую стоимость, универсальность конструкции и простоту использования. Тиристорные системы несколько сложнее, однако в электросетях с резкопеременной нагрузкой они имеют ряд преимуществ.

Однако каким бы ни был принцип действия конденсаторной установки, подключать их можно на любом участке сети (на вводе предприятий, для группы однотипных установок, поблизости от единичного потребителя или по смешанной схеме).

Источник



Правила технической эксплуатации электроустановок потребителей

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.9. Конденсаторные установки

2.9.1. Настоящая глава распространяется на конденсаторные установки напряжением от 0,22 до 10 кВ и частотой 50 Гц, предназначенные для компенсации реактивной мощности и регулирования напряжения и присоединяемые параллельно индуктивным элементам электрической сети. ¶

2.9.2. Конденсаторная установка должна находиться в техническом состоянии, обеспечивающем ее долговременную и надежную работу. ¶

2.9.3. Управление конденсаторной установкой, регулирование режима работы батарей конденсаторов должно быть, как правило, автоматическим. ¶

Управление конденсаторной установкой, имеющей общий с индивидуальным приемником электрической энергии коммутационный аппарат, может осуществляться вручную одновременно с включением или отключением приемника электрической энергии. ¶

2.9.4. Разработка режимов работы конденсаторной установки должна выполняться исходя из договорных величин экономических значений реактивной энергии и мощности. Режимы работы конденсаторной установки должны быть утверждены техническим руководителем Потребителя. ¶

2.9.5. При напряжении, равном 110% от номинального значения, вызванном повышением напряжения в электрической сети, продолжительность работы конденсаторной установки в течение суток должна быть не более 12 ч. При повышении напряжения свыше 110% от номинального значения конденсаторная установка должна быть немедленно отключена. ¶

Если напряжение на любом единичном конденсаторе (конденсаторах последовательного ряда) превышает 110% его номинального значения, работа конденсаторной установки не допускается. ¶

2.9.6. Если токи в фазах различаются более чем на 10%, работа конденсаторной установки не допускается. ¶

2.9.7. В месте установки конденсаторов должен быть предусмотрен прибор для измерения температуры окружающего воздуха. При этом должна быть обеспечена возможность наблюдения за его показаниями без отключения конденсаторной установки и снятия ограждений. ¶

2.9.8. Если температура конденсаторов ниже предельно допустимой низшей температуры, обозначенной на их паспортных табличках или в документации завода-изготовителя, то включение в работу конденсаторной установки не допускается. ¶

Включение конденсаторной установки разрешается лишь после повышения температуры окружающего воздуха до указанного в паспорте значения температуры. ¶

2.9.9. Температура окружающего воздуха в месте установки конденсаторов должна быть не выше максимального значения, указанного на их паспортных табличках или в документации завода-изготовителя. При превышении этой температуры должна быть усилена вентиляция. Если в течение 1 ч температура не снизилась, конденсаторная установка должна быть отключена. ¶

2.9.10. Конденсаторы батареи должны иметь порядковые номера, нанесенные на поверхность корпуса. ¶

2.9.11. Включение конденсаторной установки после ее отключения допускается не ранее чем через 1 мин при наличии разрядного устройства, присоединяемого непосредственно (без коммутационных аппаратов и предохранителей) к конденсаторной батарее. Если в качестве разрядного устройства используются только встроенные в конденсаторы резисторы, то повторное включение конденсаторной установки допускается не ранее чем через 1 мин для конденсаторов напряжением 660 В и ниже и через 5 мин для конденсаторов напряжением 660 В и выше. ¶

Читайте также:  Теплица с установкой бронницы

2.9.12. Включение конденсаторной установки, отключенной действием защитных устройств, разрешается только после выяснения и устранения причины отключения. ¶

2.9.13. Конденсаторная установка должна быть обеспечена: ¶

На дверях снаружи и внутри камер, дверях шкафов конденсаторных батарей должны быть выполнены надписи, указывающие их диспетчерское наименование. На внешней стороне дверей камер, а также шкафов конденсаторных батарей, установленных в производственных помещениях, должны быть укреплены или нанесены несмываемой краской знаки безопасности. Двери должны быть постоянно заперты на замок. ¶

2.9.14. При замене предохранителей конденсаторная установка должна быть отключена от сети и должен быть обеспечен разрыв (отключением коммутационного аппарата) электрической цепи между предохранителями и конденсаторной батареей. Если условий для такого разрыва нет, то замена предохранителей производится после контрольного разряда всех конденсаторов батареи специальной штангой. ¶

Контрольный разряд конденсаторов разрешается производить не ранее, чем через 3 минуты после отключения установки, если нет других указаний заводов-изготовителей. ¶

2.9.15. При техническом обслуживании конденсаторов, в которых в качестве пропитывающего диэлектрика используется трихлордифенил, следует принимать меры для предотвращения его попадания в окружающую среду. Вышедшие из строя конденсаторы с пропиткой трихлордифенилом при отсутствии условий их утилизации подлежат уничтожению в специально отведенных местах. ¶

2.9.16. Осмотр конденсаторной установки (без отключения) должен проводиться в сроки, установленные местной производственной инструкцией, но не реже 1 раза в сутки на объектах с постоянным дежурством персонала и не реже 1 раза в месяц на объектах без постоянного дежурства. ¶

Внеочередной осмотр конденсаторной установки проводится в случае повышения напряжения или температуры окружающего воздуха до значений, близких к наивысшим допустимым, действия защитных устройств, внешних воздействий, представляющих опасность для нормальной работы установки, а также перед ее включением. ¶

Источник

Монтаж, наладка и эксплуатация конденсаторных установок

Монтаж конденсаторных установок осуществляется непосредственно на ГПП или ЦТП. На распределительных устройствах через низковольтный или высоковольтный выключатель они присоединяются к сети. Они размещаются в помещении или снаружи, в зависимости от исполнения.

Подключение конденсаторных установок не производится без устройства защиты(датчики тока,напряжения), они необходимы для измерения основных параметров сети и отключения устройства при возникновении сверхтоков или перенапряжений. Комплектные конденсаторные установки уже включают необходимое оборудование для нормальной работы.

Наладка конденсаторных установок необходима для правильной синхронизации ее с сетью. Главной ее задачей есть поддержание cosφ цепи постоянным. Если она не успевает реагировать на изменение cosφ в цепи, то могут возникнуть перенапряжение при избыточной отдаче реактивной мощности, либо слишком большие просадки напряжения при ее потреблении. Если используется автоматическое секционное регулирование с помощью контакторов, необходимо отладить работу контакторов чтоб не возникал режим постоянного ввода-вывода секции из цепи, иными словами система не пошла в разнос.Для этого необходимо настроить регуляторы. При использовании тиристорного регулирования алгоритм настройки регуляторов несколько другой.

Эксплуатация конденсаторных установок включает в себя проверку исправности конденсаторов, поддерживание контактов силовых, управления в надлежащем состоянии для нормальной коммутации и т.д. Проводится согласно регламенту.

Устройства компенсации реактивной мощности могут различаться между собой. Наладка, эксплуатация и ремонт могут существенно отличатся между собой в зависимости от типа устройства.

Источник

Техническая эксплуатация конденсаторных установок

Конденсаторная установка должна находиться в техническом состоянии, обеспечивающем ее долговременную и надежную работу.

Управление конденсаторными батареями

Управление конденсаторной установкой, регулирование режима работы батарей конденсаторов должно быть, как правило, автоматическим.

Управление конденсаторной установкой, имеющей общий с индивидуальным приемником электрической энергии коммутационный аппарат, может осуществляться вручную одновременно с включением или отключением приемника электрической энергии.

Режимы работы конденсаторных батарей

Разработка режимов работы конденсаторной установки должна выполняться исходя из договорных величин экономических значений реактивной энергии и мощности. Режимы работы конденсаторной установки должны быть утверждены техническим руководителем Потребителя.

При напряжении, равном 110% от номинального значения, вызванном повышением напряжения в электрической сети, продолжительность работы конденсаторной установки в течение суток должна быть не более 12 ч. При повышении напряжения свыше 110% от номинального значения конденсаторная установка должна быть немедленно отключена.

Если напряжение на любом единичном конденсаторе (конденсаторах последовательного ряда) превышает 110% его номинального значения, работа конденсаторной установки не допускается.

Если токи в фазах различаются более чем на 10%, работа конденсаторной установки не допускается.

Требования к помещению для установки конденсаторных батарей

В месте установки конденсаторов должен быть предусмотрен прибор для измерения температуры окружающего воздуха. При этом должна быть обеспечена возможность наблюдения за его показаниями без отключения конденсаторной установки и снятия ограждений.

Если температура конденсаторов ниже предельно допустимой низшей температуры, обозначенной на их паспортных табличках или в документации завода-изготовителя, то включение в работу конденсаторной установки не допускается.

Включение конденсаторной установки разрешается лишь после повышения температуры окружающего воздуха до указанного в паспорте значения температуры.

Температура окружающего воздуха в месте установки конденсаторов должна быть не выше максимального значения, указанного на их паспортных табличках или в документации завода-изготовителя. При превышении этой температуры должна быть усилена вентиляция. Если в течение 1 ч температура не снизилась, конденсаторная установка должна быть отключена.

Конденсаторные батареи должны иметь порядковые номера, нанесенные на поверхность корпуса.

Включение конденсаторной батареи

Включение конденсаторной установки после ее отключения допускается не ранее чем через 1 мин. при наличии разрядного устройства, присоединяемого непосредственно (без коммутационных аппаратов и предохранителей) к конденсаторной батарее. Если в качестве разрядного устройства используются только встроенные в конденсаторы резисторы, то повторное включение конденсаторной установки допускается не ранее чем через 1 мин. для конденсаторов напряжением 660 В и ниже и через 5 мин. для конденсаторов напряжением 660 В и выше.

Включение конденсаторной установки, отключенной действием защитных устройств, разрешается только после выяснения и устранения причины отключения.

Предохранители для защиты конденсаторных батарей

Конденсаторная установка должна быть обеспечена: резервным запасом предохранителей на соответствующие номинальные токи плавких вставок; специальной штангой для контрольного разряда конденсаторов, хранящейся в помещении конденсаторной батареи; противопожарными средствами (огнетушители, ящик с песком и совком).

На дверях снаружи и внутри камер, дверях шкафов конденсаторных батарей должны быть выполнены надписи, указывающие их диспетчерское наименование. На внешней стороне дверей камер, а также шкафов конденсаторных батарей, установленных в производственных помещениях, должны быть укреплены или нанесены несмываемой краской знаки безопасности. Двери должны быть постоянно заперты на замок.

Читайте также:  Шкода рапид климат контроль установка

При замене предохранителей конденсаторная установка должна быть отключена от сети и должен быть обеспечен разрыв (отключением коммутационного аппарата) электрической цепи между предохранителями и конденсаторной батареей. Если условий для такого разрыва нет, то замена предохранителей производится после контрольного разряда всех конденсаторов батареи специальной штангой.

Контрольный разряд конденсаторной батареи

Контрольный разряд конденсаторов разрешается производить не ранее чем через 3 минуты после отключения установки, если нет других указаний заводов-изготовителей.

Правила эксплуатации конденсаторных батарей

При техническом обслуживании конденсаторов, в которых в качестве пропитывающего диэлектрика используется трихлордифенил, следует принимать меры для предотвращения его попадания в окружающую среду. Вышедшие из строя конденсаторы с пропиткой трихлордифенилом при отсутствии условий их утилизации подлежат уничтожению в специально отведенных местах.

Осмотр конденсаторной установки (без отключения) должен проводиться в сроки, установленные местной производственной инструкцией, но не реже 1 раза в сутки на объектах с постоянным дежурством персонала и не реже 1 раза в месяц на объектах без постоянного дежурства.

Внеочередной осмотр конденсаторной установки проводится в случае повышения напряжения или температуры окружающего воздуха до значений, близких к наивысшим допустимым, действия защитных устройств, внешних воздействий, представляющих опасность для нормальной работы установки, а также перед ее включением.

При осмотре конденсаторной установки следует проверить: исправность ограждений и запоров, отсутствие посторонних предметов; значения напряжения, тока, температуры окружающего воздуха, равномерность нагрузки отдельных фаз; техническое состояние аппаратов, оборудования, контактных соединений, целостность и степень загрязнения изоляции; отсутствие капельной течи пропитывающей жидкости и недопустимого вздутия стенок корпусов конденсаторов; наличие и состояние средств пожаротушения.

О результатах осмотра должна быть сделана соответствующая запись в оперативном журнале.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Что такое конденсаторные установки

Конденсаторная установка – это электроустановка, которая состоит из конденсаторов и дополнительного электрооборудования, и применяется для компенсации реактивной мощности электрооборудования. Вследствие работы трансформаторов, электродвигателей, пусковых устройств, происходит производство, как активной энергии, так и реактивной.

Принцип действия

Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.

Что такое конденсаторные установки

Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.

Конструкция конденсаторной установки выполнена в виде электроприбора, состоящего из конденсатора и дополнительного электрического оборудования. Данная установка предназначена для компенсации реактивной мощности оборудования, создающей электромагнитные поля и дополнительную нагрузку на электроприборы.

Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.

Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.

Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.

Назначение установок КРМ

Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.

Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.

Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами. Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.

Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.

Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения. В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

Источник

Adblock
detector