Производительность установки каталитического крекинга

Производительность установки каталитического крекинга

Каталитический крекинг — это термокаталитическая переработка нефтяных фракций для получения ценных продуктов.

Каталитический крекинг является важнейшим крупнотоннажным процессом переработки нефти. Мировая мощность построенных установок крекинга составляет более 770 млн. т/год

Сырье и продукты

В качестве сырья на установку может поступать:

  1. Вакуумный газойль с вакуумных блоков установок АВТ
  2. Непревращенный остаток с установки гидрокрекинга
  3. Фильтраты и экстракты с установок производства масел
  4. Газойли установки замедленного коксования и др.
  5. Мазуты с установок АВТ в смесях с вакуумным газойлем.

При наличии на производстве установки гидроочистки вакуумного газойля может потребоваться дополнительная гидроочистка получаемого бензина для соответствия его требованиям Евро-5.

Продуктами установки являются:

  1. Сухой газ – сырье установок сероочистки.
  2. Сжиженные углеводородные газы (пропан-пропиленовая фракция (ППФ) и бутан-бутиленовая фракция (ББФ) – сырье установок МТБЭ и сернокислотного алкилирования.
  3. Высокооктановый компонент автобензинов (ОЧИМ 90-92)
  4. Легкий каталитический газойль – сырье установок гидроочистки ДТ, компонент товарного мазута.
  5. Тяжелый каталитический газойль – сырье для производства технического углерода, компонент мазута.
  6. СВСГ – сырье установок производства серы и серной кислоты.

Бензин каталитического крекинга

Характеристики гидроочищенного бензина каталитического крекинга представлены в таблице. Бензин каталитического крекинга используется в качестве компонента для приготовления автобензинов. Вовлечение БКК в автобензины АИ-92, АИ-95, АИ-98 составляет от 20 до 50% мас. в зависимости от рецептуры.

Показатель Ед. изм. Значение
ОЧИМ ед. 90-91
ОЧММ ед. 80-80,5
ДНП кПа 72
Содержание бензола % мас. 0,5
Содержание ароматики % мас. 26
Содержание нафтенов % мас. 8
Содержание олефинов % мас. 24
Содержание изопарафинов % мас. 35
Т нк ○ С 30
Т50% ○ С 90
Ткк ○ С 213
Сера % мас. 0,0014
Плотность при 20 ○ С кг/м 3 727

Технологическая схема

Принципиальная технологическая схема установки каталитического крекинга с лифт-реактором

Принципиальная технологическая схема установки каталитического крекинга с лифт-реактором I – сырье, II – катализатор, III – бензин, IV – жирный газ, V – легкий газойль, VI – сырье для производства технического углерода, VII – тяжелый газойль, VIII — воздух, IX – пар водяной, X – дымовые газы, XI – цирку­лирующее орошение, XII – вода; Т-1÷Т-5 – теплообменники, П-1 – печь, Р-1 – реактор, Р-2 – регенератор, К-1 – колонна, К-2 – колонна-стриппинг, А-1 – котел, А-2 – циклон, ХК-1 – конденсатор-холодильник, С-1 – сепаратор, Х-1÷Х-4 – холодильник

Предварительный нагрев сырья

Сырье перекачивается насосами через блок теплообменников, где нагревается до 220 °С. Далее сырьевой поток разделяется на 8 потоков, которые направляются в печь, где происходит нагрев до температуры 250-260 °С.

Подача сырья в печь

Подача сырья в печь

Реакторно-регенераторный блок

Циркуляция катализатора в реакторно-регенераторном блоке

Циркуляция катализатора в реакторно-регенераторном блоке

Нагретый поток сырья поступает в слой циркулирующего катализатора реакторного блока через райзер – прямоточный реактор. Происходит смешение потока сырья, распыляемого через форсунки с катализатором, имеющим температуру 530 °С.

При температуре 530 °С происходит реакция крекинга с образованием продуктов реакции, находящихся в газообразном состоянии.

Смешение сырья и катализатора в райзере

Смешение сырья и катализатора в райзере

Образовавшаяся смесь, состоящая из продуктов реакции и катализатора перемещается в реактор, где установлены циклоны 1 и 2 ступени.

Циклоны

В циклонах 1 ступени более тяжелый катализатор, за счет центробежной силы, отбрасывается к стенкам устройства и направляется вниз реактора, а газообразные продукты реакции направляются во вторую ступень.

Оставшиеся продукты реакции переходят во вторую ступень циклонов тонкой очистки, где происходит аналогичный процесс.

Циклоны первой и второй ступени

Циклоны первой и второй ступени

При этом, катализатор ссыпается вниз реактора, куда подается пар для того, чтобы отделить принесенные ценные для нефтепереработки углеводороды. На поверхности катализатора откладывается кокс – побочный продукт.

Очищенный от катализатора продукт в состоянии парогазовой смеси с верха реактора подается на блок нагревательно-фракционирующей части (НФЧ) для последующего разделения.

После отделения от продукта катализатор попадает в транспортную линию, куда подается воздух для его транспортировки в регенератор. В регенераторе происходит выжиг кокса с поверхности катализатора при температуре 600 °С, поскольку при такой температуре кокс самовоспламеняется.

Выжиг кокса в регенераторе

Выжиг кокса в регенераторе

Дымовые газы, пройдя две ступени циклонов, попадают в котел-утилизатор для выработки пара среднего давления.

Отбившийся при этом катализатор спускается вниз регенератора, ссыпается в хоппер – бункер для предварительного сбора катализатора. Затем через шиберную задвижку катализатор подается на реакцию с сырьем в райзер.

Движение катализатора между реактором и регенератором происходит за счет подачи воздуха от воздуходувки, а между регенератором и реактором за счет перепада давления.

Циркуляция катализатора между реактором и регенератором

Циркуляция катализатора между реактором и регенератором

Основная фракционирующая колонна

Парогазовая смесь, которая образовалась в процессе реакции, сверху реактора направляется в кубовую часть фракционирующей колонны, где проходит ее разделение.

Основная фракционирующая колонна

Основная фракционирующая колонна

В кубовой части колонны образуется шлам – непревращенный остаток каталитического крекинга с высоким содержанием кокса, тяжелых металлов, катализаторной пыли. Шлам обычно не выводится, а отправляется на смешение с сырьем реакторного блока.

С нижней глухой тарелки колонны выводится тяжелый каталитический газойль. Одна часть газойля через отпарной стриппинг выводится из колонны, а вторая через блок теплообменников возвращается в колонну в качестве орошения для охлаждения кубовой части колонны и предотвращения коксообразования.

Из средней части колонны выводится легкий каталитический газойль, являющийся компонентом дизельного топлива. Он проходит через стриппинг, в который подается пар, отпаренный каталитический газойль выводится с установки.

Вывод легкого и тяжелого газойлей с установки

Вывод легкого и тяжелого газойлей с установки

Сверху фракционирующей колонны выводятся:

  1. Сухой газ
  2. Пропан-пропиленовая фракция
  3. Бутан-бутиленовая фракция
  4. Бензин

Все продукты реакции, попадая в АВЗ и водяные охладители – охлаждаются и с температурой 30-45 градусов Цельсия попадают в трехфазный сепаратор. Здесь происходит разделение на воду, бензин и газ.

Сепаратор: разделение на воду, бензин и газ

Сепаратор: разделение на воду, бензин и газ

Часть бензина возвращается в колонну, а другая часть направляется на блок стабилизации бензина, где идет происходит разделение газа от бензина.

Блок очистки жирного газа от сероводорода

Сверху сепаратора смесь газов попадает на блок очистки от сероводорода в аппарат для поглощения газов (абсорбер).

В верхнюю часть колонны подается метилдиэтаноламин (МДЭА), который улавливает сероводород и с помощью насосов выводится на регенерацию (десорбцию).

Абсорберы 1-й и 2-й ступени

Очищенный от сероводорода жирный газ поступает на прием газовых компрессоров. Компремированный жирный газ охлаждается и конденсируется в АВЗ. Далее он снова направляется в сепаратор, из которого при помощи насосов поступает в абсорбер 1-й ступени. Также в абсорбер поступает газ из сепаратора высокого давления и бензин. Куб колонны подогревается с помощью термосифонных кипятильников.

Принципиальная схема нагревательно-фракционирующей части

Принципиальная схема нагревательно-фракционирующей части (НФЧ)

Пары с верха абсорбера 1-й ступени содержат углеводороды С4-С5, являющиеся ценными компонентами бензина. С целью их выделения предусмотрен абсорбер 2-й ступени.

В абсорбер 2-й ступени в качестве абсорбента подается стабильный бензин из основной фракционирующей колонны. Сверху абсорбера 2-й ступени выводится сухой газ, поступающий на установку сероочистки. Насыщенный абсорбент, содержащий углеводороды С4-С5 поступает в основную фракционирующую колонну на десорбцию.

Колонна стабилизации

Деэтанизированный бензин, в котором содержатся ББФ и ППФ, с низа абсорбера 1-й ступени поступает в колонну стабилизации.

С низа колонны выводится стабильный бензин, а смесь ППФ и ББФ выводится сверху колонны, избыток сжиженных газов подается на орошение колонны.

Депропанизатор (опционально)

Депропанизатор предусмотрен лишь в некоторых конфигурациях установок каталитического крекинга. Во многих конфигурациях ППФ выделяется из головной фракции уже при дальнейшей переработке на установках производства МТБЭ и сернокислотного алкилирования.

Смесь ППФ и ББФ из колонны стабилизации нагревается потоком кубового продукта депропанизатора и поступает в депропанизатор для разделения смеси на ППФ и ББФ.

Пары ППФ с верха колонны охлаждаются и конденсируются в рефлюксной емкости. Часть ППФ подается в колонну в качестве орошения, избыток выводится с установки. С куба колонны выводится ББФ, после чего поступает на установки производства МТБЭ или сернокислотного алкилирования.

Материальный баланс

Материальный баланс и некоторые параметры технологического режима работы установки каталитического крекинга Г-43/107 приведены в таблице.

Материальный баланс и параметры технологического режима установки Г-43-107

Материальный баланс и параметры технологического режима установки Г-43-107

Достоинства и недостатки

Недостатки

  1. Дорогостоящий катализатор, который необходимо регулярно добавлять в систему для компенсации дезактивации и истирания катализатора.
  2. Сложность аппаратурного оформления.
  3. Очень высокие капитальные и эксплуатационные затраты

Достоинства

  1. Возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами;
  2. Сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д.
  3. Широкие возможности варьирования продуктовой корзиной за счет различных добавок/модификаторов для катализаторов крекинга, а также за счет выбора температурного режима крекинга

Существующие установки

Перечень установок каталитического крекинга на предприятиях РФ представлен в таблице. В России процесс реализован на 14 предприятиях, суммарная мощность установок крекинга составляет около 24 млн. т /год.

Видео

Источник



Каталитический крекинг

На ранних стадиях развития нефтеперерабатывающей промышленности потребности в автомобильном бензине росли быстрей, чем потребности в тяжелом жидком топливе (например, в дизельном топливе), и соответственно росло количество сырой нефти, которую нужно было превратить в бензин. Нефтепереработчикам стало ясно, что если производить прямогонный бензин в количестве, достаточном для удовлетворения потребности рынка, то рынок будет одновременно переполнен тяжелым топливом. Экономическим следствием сложившейся ситуации стал постоянный рост цен на бензин при падении цен на более тяжелые фракции.

Читайте также:  Моральные установки общества это

Чтобы справиться с этой физической и экономической проблемой, находчивые инженеры-нефтепереработчики придумали несколько крекинг-процессов, из которых наиболее широко распространен каталитический крекинг.

Рассмотрим технологический процесс крекинга: в крекинг-установке прямогонные фракции тяжелого газойля нагревают при повышенном давлении в контакте с катализатором, который способствует протеканию процесса.

Катализатор — это вещество, которое ускоряет или даже вызывает химическую реакцию, но когда реакция заканчивается, катализатор остается в неизменном виде — таким же, каким был сначала. Другими словами, он не изменяется химически, но заставляет другие вещества реагировать друг с другом.

Сырьем для процесса каталитического крекинга обычно является прямогонный тяжелый газойль, а также легкая фракция вакуумной перегонки. Температура кипения сырья для крекинга должна находиться в пределах 340—590°С (650—1100°F). Чтобы процесс начался, требуется нагревание; температура в реакторе во время крекинга находится в районе 480°С (900°F).

Процесс разработан так, чтобы особым образом содействовать протеканию крекинга. Задача состоит в том, чтобы превратить тяжелые фракции в бензин. Во время работы установки происходит несколько процессов. Когда большие молекулы разрываются на части, то водорода оказывается недостаточно, чтобы насытить все молекулы, и поэтому некоторая часть углерода переходит в кокс, который почти целиком состоит из атомов углерода, слепленных вместе.

При разрыве крупных молекул получается полный набор мелких — от метана и выше. Поскольку водорода недостаточно, многие из образующихся молекул оказываются олефинами. Если некоторые молекулы в сырье состоят из нескольких ароматических или нафтеновых циклов, соединенных вместе, они разваливаются на меньшие ароматические или нафтеновые молекулы и олефины. И, наконец, молекулы, состоящие из нескольких ароматических или нафтеновых циклов и длинных боковых цепей, как правило, теряют боковые цепи. Полученные в результате молекулы, хотя и содержат меньше атомов углерода, но оказываются более тяжелыми, то есть имеют более высокую относительную плотность. Кроме того, их температуры кипения обычно также выше. Таким образом, продуктами крекинга является полный набор углеводородов, от метана до остатка и, кроме того, кокс. 1)

Аппаратурное оформление каталитического крекинга состоит из трех частей: реактора, регенератора и ректификационной колонны.

Реактор

Реактор – центральная часть установки каталитического крекинга.

Сырьё проходит через нагреватель, смешивается с катализатором и поступает в вертикальную трубу (райзер), ведущую в нижнюю часть реактора. В момент, когда сырьё поступает в реактор, процесс уже идёт, поэтому время пребывания сырья в реакторе – всего несколько секунд. В более современных конструкциях крекинг, в основном, происходит уже в райзере. Таким образом, реактор нужен только для отделения углеводородов от катализатора. Это производится с помощью циклона (механическое приспособление, использующее центрифугирование).

Катализатор обычно бывает одного из двух типов: шарики или микросферы. Диаметр шариков 0,3 или 0,6 см. Микросферы гораздо меньше (похожи на детскую присыпку). Если сосуд с микросферами встряхивать или наклонять, порошок ведёт себя как жидкость (крекинг с псевдоожиженным катализатором). Каждая микросфера (или шарик) имеет множество пор и, следовательно, огромную площадь поверхности.

Регенератор

Та часть углеводородов, которая во время крекинга превращается в кокс, оседает в виде отложений на катализаторе. Когда поверхность катализатора покрывается отложениями, катализатор становится неактивным (отработанным). Чтобы удалить эти углеродные отложения, отработанный катализатор подают в регенератор, где его смешивают с горячим воздухом, нагретым приблизительно до 600 °С.

Этот процесс называется окислением кокса и напоминает сжигание древесного угля в брикетах, потому что в обоих случаях C соединяется с O2, и при этом образуется диоксид углерода (СО2) и иногда монооксид углерода (СО), а также выделяется большое количество тепла. Тепло в виде горячего потока СО и СО2 обычно используют в какой-либо части процесса, например, чтобы нагреть сырьё в теплообменнике. В более старых моделях поток СО/СО2 отправляют в печь, где СО доокисляется до СО2, прежде чем СО2 наконец отправляется в атмосферу.

Восстановленный катализатор выходит из нижней части регенератора. Его можно снова смешать с сырьём и направить в реактор. Таким образом, катализатор находится в непрерывном движении, проходя по циклу крекинг–регенерация.

Ниже представлена схема реакторно-регенераторного блока установки каталитического крекинга, а на последующем видео видно, как указанные потоки проходят через соответствующее оборудование.

Ректификационная колонна крекинга

Тем временем углеводородная смесь, полученная в результате крекинга, подаётся в ректификационную колонну для разделения продуктов каткрекинга.

В колонне смесь обычно разделяется на фракции: УВ газы (С4 и более лёгкие, то есть С4

), крекинг-бензин, лёгкий крекинг-газойль, тяжёлый крекинг-газойль и кубовый остаток (рециркулирующий газойль).

Последний продукт может использоваться разными способами, но чаще всего его смешивают со свежей порцией сырья, с которой он снова поступает в процесс. Если число циклов достаточно велико, рециркулирующий газойль может полностью исчезнуть – это рециркуляция до уничтожения.

Тяжёлый крекинг-газойль можно использовать как сырьё для термического крекинга или как компонент остаточного топлива (мазута). Лёгкий газойль – хороший компонент дизельного и дистиллятного топлива, а крекинг-бензин – эффективный компонент автомобильного бензина.

Граница между бензиновой фракцией и фракцией легкого газойля не является строго фиксированной. Перемещение этой границы позволяет регулировать соотношение между бензином и дистиллятом в зависимости от времени года. Когда наступает зимний отопительный сезон, многие НПЗ переходят на режим максимального количества дистиллята. Для этого изменяют точку выкипания для крекинг-бензина, так чтобы большее количество продукта попало во фракцию лёгкого газойля. Летом, чтобы перейти на режим максимального количества бензина, границу между фракциями сдвигают в противоположном направлении.

Верхние погоны, выходящие из ректификационной колонны крекинга, отличаются по составу от лёгких фракций, получающихся при ректификации сырой нефти. В процессе крекинга образуются олефины, поэтому поток углеводородных газов содержит не только метан, этан, пропан и бутаны, но также водород, этилен, пропилен и бутилены. Из-за этих дополнительных компонентов крекинг-газ направляют для разделения на установку фракционирования крекинг-газа. В этом состоит отличие от газа, полученного, например, при ректификации сырой нефти, который содержит только насыщенные соединения. В последнем случае газ направляют на установку фракционирования насыщенного газа.

Установка каталитического крекинга

Все узлы установки каталитического крекинга, соединенные в общую систему, показаны на следующем рисунке.

В системе имеется два циркулирующих потока. В левой части рисунка катализатор выходит из зоны реакции, проходит регенерацию и снова возвращается в зону реакции. В правой части углеводороды входят в систему и уходят из неё, но за счёт фракции рециркулирующего газойля некоторые компоненты постоянно циркулируют в системе. 3)

Промышленный каталитический крекинг, достигший современного уровня развития, основан на использовании алюмосиликатных катализаторов. К числу естественных алюмосиликатов относятся глины. Алюмисиликатные катализаторы, как природные, так и синтетические, являются высокопористыми веществами с удельной поверхностью от 100 до 600 м2/г.

На большинстве современных установок применяют микросферический катализатор с размером основной массы частиц от 0,2 до 1,5 нм. Сферическая форма способствует меньшему истиранию катализатора и снижает эрозию аппаратов реакторного блока, где циркулирует катализатор.

Каталитический крекинг – типичный пример гетерогенного катализа. Реакции протекают на границе двух фаз: твёрдой (катализатор) и паровой или жидкой (сырьё), поэтому решающее значение имеют структура и поверхность катализатора.

Постадийно процесс каталитического крекинга можно представить следующим образом:

Получить представление о том, как выглядит установка каталитического крекинга полностью, вы можете, посмотрев, следующее видео:

До данного момента мы успели рассмотреть атмосферную перегонку сырой нефти, вакуумную перегонку и каталитический крекинг. На рисунке ниже показано, как все это выглядит в комплексе.

Технологическая схема нефтепереработки вплоть до крекинга:
1 — прямогонный бензин;
2 — прямогонная нафта;
3 — прямогонный керосин;
4 — прямогонный легкий газойль;
5 — прямогонный тяжелый газойль;
6 — легкая фракция вакуумной перегонки;
7 — бензин каталитического крекинга;
8 — легкий газойль каталитического крекинга;
9 — тяжелый газойль каталитического крекинга.

Источник

Каталитический Крекинг

Целью каталитического крекинга является получение необходимых соединений, используемых в качестве ценных компонентов бензина, повышая его октановое число. При этом также образуются другие продукты: в основном, углеводородные газы, в том числе, ненасыщенные, и кокс.

Каталитический крекинг, наряду с каталитичеким риформингом, является одним из основных процессов вторичной переработки нефти.

Предпосылки создания метода

Потребность в автомобильном бензине всегда была существенней, чем в тяжелом жидком топливе, не говоря уже об остаточных нефтепродуктах. Нефтепромышленники поняли, что при производстве бензина в количестве, удовлетворяющем спросу, рынок одновременно будет затоварен тяжелым топливом. Чтобы избежать такой невыгодной во всех отношениях ситуации был разработан метод переработки тяжелых фракций в более легкие, который назвали крекинг. Наибольшее распространение в силу ряда причин получил именно каталитический крекинг.

Сырье

Основным сырьем для процесса каталитического крекинга являются фракции с температурой кипения выше 350 °С. До недавнего времени в качестве сырья использовался прямогонный тяжелый газойль, а также легкая фракция вакуумной перегонки. Однако, в последние годы наблюдается тенденция к утяжелению сырья. Так на современных установках переходят к переработке глубоковакуумных газойлей с температурами конца кипения до 620 °С.

Химизм процесса

В процессе каталитического крекинга происходит разрыв больших углеводородных молекул, что сопровождается образованием следующих продуктов:

  • Полный набор углеводородов от метана и выше
  • Олефиновые газы – за счет отщепления водорода
  • Кокс – в результате недостатка водорода
Читайте также:  Alesis педаль для электронной ударной установки

Молекулы, состоящие из нескольких ароматических или нафтеновых циклов, распадаются на меньшие ароматические или нафтеновые молекулы и олефины. Ароматические или нафтеновые молекулы, имеющие длинные боковые цепи, теряют их.

Катализатор

В современных установках каталитического крекинга в основном используется цеолитсодержащий микросферический катализатор с размером частиц 35 — 150 мкм и площадью поверхности 300 — 400 м 2 /гр. Такие микросферы представляют собой алюмосиликатную матрицу с нанесенным на нее цеолитным компонентом, содержание которого не превышает 30%.

В большинстве случаев в качестве цеолита используется ультрастабильный цеолит Y, в который иногда добавляется ZSM-5. Некоторые производители практикуют добавление в катализатор редкоземельных металлов.

Для обеспечения полного сгорания кокса и окисления его до СО2, в катализаторы добавляют промоторы дожига СO. Уменьшение истирания катализатора также обеспечивают специальными добавками.

Технология

В состав установки каталитического крекинга входит три основных блока:

  • Реактор
  • Регенератор
  • Ректификационная колонна

Реактор

Потоки нагретого сырья и катализатора смешиваются, в зависимости от типа реактора, в разных узлах установки, и попадают в реактор, представляющий собой большой сосуд. В реакторе проходит как сам процесс крекинга, так и отделение углеводородов от катализатора, которое производится с помощью центрифугирования.

В настоящее время наблюдается полный отказ от периодических реакторов Гудри в пользу процесса непрерывной регенерации. Такие установки непрерывной регенерации делят на несколько типов:

  • Реакторы с движущимся слоем катализатора

Сырье подается снизу, а катализатор сверху. Отработанный катализатор подается на регенерацию также через низ, а продукты через верх — на разделение.

  • Реактор с кипящим слоем катализатора (Выход крекинг- бензина 49 — 52 %)

В данном случае микросферический катализатор находится во взвешенном состоянии в потоке сырья. По мере закоксовывания частицы катализатора тяжелеют и падают вниз, откуда выводятся на регенерацию.

  • Лифт-реактор (Выход крекинг-бензина 50 — 55 %)

Нагретое сырье диспергируется и смешивается с потоком катализатора в вертикальной трубке (райзере), и подается в реактор снизу. Процесс крекинга начинается уже в райзере. В реакторе смесь катализатора и продуктов разделяются на сепараторе, а остатки продуктов десорбируются паром в десорбере. В настоящее время такой тип реакторов является наиболее распространенным (см. рис.)

  • Миллисеконд

Катализатор подается в реактор нисходящим потоком, а пары сырья впрыскиваются перпендикулярно направлению движению катализатора, т.е. через специальные боковые отверстия. Время реакции в данном случае составляет всего несколько миллисекунд, в результате чего повышается выход бензиновой фракции (до 60 — 65 %).

Реакторный блок установки каталитического крекинга Схематическое изображение реакторного блока установки каталитического крекинга

Регенаратор

Образовавшийся в процессе крекинга кокс откладывается на катализаторе, что приводит к существенному снижению активности последнего. Для устранения этого эффекта, отработанный катализатор направляют в специальный сосуд – регенератор. В регенераторе отработанный катализатор, покрытый отложениями кокса смешивают с нагретым до 600 °С воздухом. При этом происходит окисление кокса:

Восстановленный катализатор можно снова смешать с сырьем и направить в реактор. Таким образом обеспечивается непрерывный цикл крекинг — регенерация.

Регенератор катализатора установки каталитического крекинга Схематическое изображение блока регенарации катализатора установки каталитического крекинга

Ректификация продуктов крекинга

Углеводородная смесь, образовавшаяся в результате крекинга, направляется в ректификационную колонну, где разделяется на следующие фракции:

  • Углеводородные газы С4-
  • Крекинг бензин
  • Легкий крекинг-газойль
  • Тяжелый крекинг-газойль
  • Кубовый остаток (рециркулирующий газойль)
Ректификационная колонна установки каталитического крекинга Схематическое изображение ректификационной колонны установки каталитического крекинга

Состав продуктов

В состав газов, образующихся в процессе каталитического крекинга входят не только предельные углеводороды — метан, этан, пропан и бутан, но и олефиновые углеводороды (до 50 %) — этилен, пропилен и бутилен, а также водород.

В связи с наличием в своем составе непредельных углеводов, газ с ректификационной колонны каталитического крекинга направляют на установку фракционирования крекинг-газа. Благодаря присутствию значительного количества изобутана, бутан-бутиленовая фракция используется в процессе алкилирования. Отдельно выделяется пропилен, который используется для производства полипропилена.

Крекинг-бензин представляет собой ценный компонент автомобильного бензина, вследствие довольно большого октанового числа (ОЧИ 88 — 91). В составе крекинг-бензина содержится незначительное количество бензола (менее 1 %) и ароматических углеводородов (20 — 25 %). Это позволяет использовать его как компонент бензинов, соответствующих нормам Евросоюза (Евро-4 и Евро-5).

Недостатком крекинг бензина является довольно существенное содержание непредельных углеводородов (до 30 %) и серы (0,1 — 0,5 %), что негативно сказывается на стабильность топлива.

Легкий крекинг-газойль содержит большое количество ароматики, что характеризуется довольно низким цетановым числом (20 — 25 единиц), а также существенное количество сернистых соединений (0.1 — 0,5 %). Эти факторы ограничивают применений легкого газойля каталитического крекинга в качестве компонента дизельного топлива. Рекомендованная норма — до 20 %.

В связи с этим альтернативным применением легкого крекинг-газойля является его использование в качестве судового топлива, разбавления котельных топлив и для производства сажи.

Тяжелый крекинг-газойль используют как сырье для термического крекинга или как компонент остаточного топлива. В связи с большим содержанием полициклических ароматических углеводородов тяжелый крекинг-газойль применяется также для получения высококачественного игольчатого кокса.

Рециркулирующий газойль, как понятно из названия, в основном повторно смешивают с поступающим сырьем. При достаточно большом количестве циклов рециркулирующий газойль может полностью исчезнуть, в этом случае говорят о рециркуляции до уничтожения.

Источник

Технико-экономические показатели установки каталитического крекинга

Экономическая целесообразность и эффективность строительства установки каталитического крекинга. Расчет технико-экономических показателей: производства продукции, капитальных затрат, заработной платы, себестоимости продукции, прибыли и рентабельности.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык русский
Дата добавления 04.02.2013
Размер файла 55,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

Кафедра «Химия и химическая технология»

на тему: «Технико-экономические показатели установки каталитического крекинга»

Выполнила: Сафарова Азиза

шифр: «050721-Химическая технология органических веществ»

Группа ХТНГ — 09 р/о

Руководитель: пр. Карабасова Н.А.

1. Расчет технико-экономических показателей

1.1 Расчет производства продукции

1.2 Расчет капитальных затрат

1.3 Расчет по труду и заработной плате

1.4 Расчет себестоимости продукции

1.5 Расчет прибыли и рентабельности

1.6 Экономическая эффективность проектируемого объекта

Список использованных источников

Бензины являются одним из основных видов горючего для двигателей современной техники. Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют бензины.

В настоящее время производство бензинов является одним из главных в нефтеперерабатывающей промышленности и в значительной мере определяющим развитие этой отрасли.

Каталитический крекинг — один из важнейших процессов, обеспечивающих глубокую переработку нефти. Внедрению каталитического крекинга в промышленность в конце 30-х гг. 20 в. (США) способствовало создание эффективного с большим сроком службы катализатора на основе алюмосиликатов (Э. Гудри, 1936 г). Основное достоинство процесса — большая эксплуатационная гибкость: возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д. Такой универсальностью объясняется весьма значительная доля каталитического крекинга в общем объёме переработки нефти.

В настоящее время сырьем каталитического крекинга служит вакуумный газойль — прямогонная фракция с пределами выкипания 350-500°С. Конец кипения определяется, в основном, содержанием металлов и коксуемостью сырья, которая не должна превышать 0,3%. Фракция подвергается предварительной гидроочистке для удаления сернистых соединений и снижения коксуемости. Также у ряда компаний (UOP, IFP) имеется ряд разработанных процессов каталитического крекинга тяжелых фракций — например, мазута (с коксуемостью до 6-8%). Так же в качестве сырья используют остаток гидрокрекинга, возможно использование как компонентов сырья деасфальтизатов.

1. Расчет технико-экономических показателей

Целью этого раздела является определение экономической целесообразности строительства установки. Для этого выполняем следующий расчет.

показатель эффективность установка каталитический крекинг

1.1 Расчет производства продукции

Производственная программа установки рассчитана на год. Исходными данными для расчета программы служат суточная или часовая производительность установки, качественная характеристика сырья и продукции, норма работы и простоев оборудования.

Производительность основного оборудования в единицу времени (сутки) и процент выхода продукции берется из технологической части дипломного проекта на основе материального баланса установки.

Эффективный фонд времени работы оборудования для непрерывного процесса производства определяется следующим образом:

календарный фонд времени минус простои ведущего оборудования в ремонтах согласно графика ППР.

где Тэф-эффективный фонд времени работы оборудования;

Ткал — календарный фонд времени;

Ткап — простой оборудования в капитальном ремонте;

Ттек — простой оборудования в текущем ремонте.

Простои оборудования можно принять согласно структуры и продолжительности ремонтных циклов, межремонтных периодов и норм простоя в ремонте технологических установок нефтеперерабатывающих производств.

План производства продукции по установке на год определяется произведением суточной производительности и эффективного фонда времени работы оборудования. Производственная программа установки в натуральном выражении условно равна производственной мощности.

Источник

Каталитический крекинг

ИА Neftegaz.RU. Каталитический крекинг (Catalytic cracking) — термокаталитическая переработка нефтяных фракций с целью получения компонента высокооктанового бензина, легкого газойля и непредельных жирных газов.

Читайте также:  Установка нормы высева сеялка сзп

Каталитический крекинг — один из важнейших процессов, обеспечивающих глубокую переработку нефти. Внедрению каталитического крекинга в промышленность в конце 30-х гг. 20 в. (США) способствовало создание эффективного с большим сроком службы катализатора на основе алюмосиликатов (Э. Гудри, 1936 г).
Основное достоинство процесса — большая эксплуатационная гибкость: возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д.
Такой универсальностью объясняется весьма значительная доля каталитического крекинга в общем объёме переработки нефти.

При каталитическом крекинге происходят следующие основные реакции: разрыв связей С-С, то есть перераспределение водорода (гидрирование и дегидрирование), деалкилирование, дегидроциклизация, полимеризация, конденсация.

Соотношение скоростей этих реакций зависит от состава сырья, типа катализатора и условий проведения процесса.

При каталитическом крекинге парафинов образуются, в основном, менее высокомолекулярные алканы и олефины, причем содержание последних увеличивается с повышением молекулярной массы сырья. Более высокомолекулярные парафины расщепляются легче в отличие от низкомолекулярных.

Крекинг парафинов нормального строения сопровождается вторичными реакциями, приводящими к образованию ароматических углеводородов и кокса, и обычно происходит труднее и менее глубоко, чем расщепление изопарафинов.

Нафтеновые углеводороды с длинными алкильными цепями при каталитическом крекинге превращаются в алкилнафтеновые или алкилароматические углеводороды со сравнительно короткими боковыми цепями.

Крекинг ароматических углеводородов (преимущественно алкилароматических) сопровождается их деалкилированием и переалкилированием, а также конденсацией.

При деалкилировании образуются парафины, олефины и алкилароматические соединения меньшей молекулярной массы.

Реакционная способность ароматических углеводородов возрастает с увеличением их молекулярной массы.

Конденсация ароматических углеводородов друг с другом или с непредельными соединениями приводит к образованию полициклических углеводородов, что способствует отложению кокса на поверхности катализатора.

Наряду с упомянутыми происходят следедующие важные вторичные реакции: изомеризация, полимеризация, циклизация и др. реакции с участием олефинов, образующихся при крекинге сырья; алкилирование ароматических углеводородов, приводящее к более тяжелым продуктам, которые способны алкилироваться дальше или конденсироваться с образованием кокса и т. д. Поскольку отложению кокса на поверхности катализатора способствуют все вторичные реакции, интенсивность их оценивают соотношением выходов бензина и кокса. Чем выше это соотношение, тем селективнее процесс. Количество и качество продуктов крекинга зависят от характера сырья, типа катализатора и технологического режима процесса. При этом влияние заданных параметров (давление, температуры нагрева сырья в трубчатой печи и реакторе, а также время контакта исходной фракции с катализатором) оценивают обычно по изменению степени превращения сырья. Степень равна сумме выходов бензина, газообразных углеводородов и кокса и достигает на современных установках каталитического крекинга 70-80% по массе. Выбор температуры определяется характеристиками катализатора и сырья и, прежде всего, временем их контакта, технологической схемой и назначением процесса, устройством реакторного блока. Повышение температуры способствует возрастанию глубины конверсии сырья, постепенному уменьшению выхода бензина, усилению коксообразования, а также увеличению степени ароматизации продуктов крекинга, что приводит к повышению октанового числа бензина и снижению цетанового числа компонентов дизельного топлива. Макс. выход газойлевых фракций достигается при сравнительно низких температурах крекинга, бензина и углеводородов С3-С4 — при высоких.

Сырьем каталитического крекинга служит вакуумный газойль — прямогонная фракция с пределами выкипания 350-500С.
Конец кипения определяется, в основном, содержанием металлов и коксуемостью сырья, которая не должна превышать 0,3%.
Фракция подвергается предварительной гидроочистке для удаления сернистых соединений и снижения коксуемости.
Также у ряда компаний (UOP, IFP) имеется ряд разработанных процессов каталитического крекинга тяжелых фракций — например, мазута (с коксуемостью до 6-8%).
Так же в качестве сырья используют остаток гидрокрекинга, возможно использование как компонентов сырья деасфальтизатов.

Каталитический крекинг проводят в прямоточных реакторах с восходящим потоком микросферического катализатора (лифт-реакторах) или в реакторах с нисходящим компактным слоем шарикового катализатора.

Отработанный катализатор непрерывно выводят из реакторов и подвергают регенерации путем выжига кокса в отдельном аппарате.
Реактор — с кратность циркуляции катализатора к сырью — 10:1 (для установок с лифт-реактором), температура — 510-540 C, давление — 0,5-2 атм
Регенератор :температура — 650-700 C, давление — 1-3 атм

Используется цеолитсодержащий микросферический катализатор (размер частиц 35-150 мкм). Площадь поверхности 300-400 м/гр. Он представляет собой крекирующий цеолитный компонент, нанесенный на аморфную алюмосиликатную матрицу. Содержание цеолита не превышает 30%. В качестве цеолитного компонента используется ультрастабильный цеолит Y, иногда с добавками цеолита ZSM-5 для увеличения выхода и октанового числа бензина. Ряд компаний при приготовлении катализатора также вводят в цеолит редкоземельные металлы. В катализаторе крекинга также содержатся добавки, уменьшающие истирание катализатора, а также промоторы дожига СО, образующегося в регенераторе при выжиге кокса, до СО2.

Различают установки по организации процесса:
Периодические (реакторы Гудри).

Через нагретый стационарный слой катализатора пропускают сырье и после того как он закоксуется реактор ставят на регенерацию;
Непрерывной регенерации.

Из реактора выводится закоксованный катализатор, с поверхности которого выжигается кокс в отдельном аппарате и возвращается в реактор. После регенерации катализатор сильно нагрет, чего хватает для процесса крекинга, поэтому процесс каталитического крекинга не нуждается в подводе внешнего тепла.

Установки непрерывной регенерации подразделяются:
Реакторы с движущимся слоем катализатора.

Слой шарикового катализатора движется сверху вниз по реактору навстречу поднимающимся парам сырья. При контакте происходит крекинг, катализатор через низ отправляется на регенерацию, продукты на разделение. Регенерация протекает в отдельном аппарате с помощью воздуха; при этом выделяющееся при сгорании кокса теплоиспользуют для генерации пара. Типовая установка — 43-102.
Реакторы с кипящим слоем катализатора. Микросферический катализатор витает в потоке паров сырья. По мере закоксовывания частицы катализатора тяжелеют и падают вниз. Далее катализатор выводится на регенерацию, которая проходит также в кипящем слое, а продукты идут на разделение. Типовые установки — 1А/1М, 43-103.
Реакторы с лифт-реактором. Нагретое сырье в специальном узле ввода диспергируется и смешивается с восходящим потоком катализатора в специальном узле. Далее смесь катализатора и продуктов крекинга разделяется кипящем слое в сепараторе специальной конструкции. Остатки продуктов десорбируются паром в десорбере. Время контакта сырья и катализатора составляет несколько секунд. Типовая установка — 43-107.
Миллисеконд. Характерная особенность процесса — отсутствие лифт-реактора. Катализатор поступает в реактор нисходящим потоком, в катализатор перпендикулярно направлению его движения впрыскиваются пары сырья. Общее время реакции составляет несколько миллисекунд, что позволяет (повысив соотношение катализатор:сырье) добиться повышения выхода бензиновой фракции вплоть до 60-65%
На данный момент наиболее совершенными являются лифт-реакторы. Так, выход бензина на них составляет 50-55% с октановым числом 91/92 , тогда как у реакторов с кипящим слоем выход бензина 37% с октановым числом 90/91.

Выход продукции, в %
Взято всего: 100
Гидроочищенный вакуумный газойль (Фр.350-500С) 100
Получено всего: 100
H2 0,04
СН4 0,25
C2H6 0,23
C2H4 0,36
C3H8 0,85
С3H6 2,73
Бутан 0,89
Бутены 2,5
изобутан 4,20
бензиновая фракция (ОЧМ-91/92) 58,62
газойль (легкий+тяжелый) 27,17
Кокс + потери 2,17

Параметры продуктов на выходе
Газ
Газ каталитического крекинга наполовину состоит из непредельных углеводородов, в основном, пропилена и бутенов. Также присутствуют значительные количества изобутана. Благодаря этому бутан-бутиленовая фракция газа используется как сырье процесса алкилирования с целью получения высокооктанового бензина. Пропан-пропиленовая фракция используется для выделения пропилена для производства полипропилена. Ввиду большой суммарной мощности установок каталитического крекинга, доля пропилена, вырабатываемый в процессе, составляет до 15% от его общего производства. Сухой газ (водород, метан, этан) используется в качестве топлива в печах заводских установок.
Бензин
В процессе каталитического крекинга вырабатывается высокооктановый бензин с ОЧИ 88-91 пунктов. Кроме того, бензин содержит менее 1% бензола и 20-25% ароматических углеводородов, что дает возможность использовать его для приготовления бензинов согласно последним нормам Евросоюза (Евро-4, Евро-5). Основной недостаток бензина каталитического крекинга — высокое содержание непредельных углеводородов (до 30%) и серы (0,1-0,5%), что очень плохо влияет на стабильность топлива при хранении. Бензин быстро желтеет из-за полимеризации и окисления олефинов и потому не может применяться без смешения с другими бензиновыми фракциями.
Легкий газойль
Легким газойлем каталитического крекинга считается фракция 200-270С (реже 200-320 или 200-350). В ней содержится большое количество ароматических углеводородов, что приводит к низкому цетановому числу ( как правило, не выше 20-25). Кроме того, даже при условии предварительной гидроочистки сырья, в легком газойле содержится значительное количество сернистых соединений (0,1-0,5%). Из-за этого легкий газойль не может использоваться в больших количествах для приготовления дизельного топлива. Рекомендуемое его содержание в дизельном топливе — до 20% (в случае, если в топливе имеется запас по содержанию серы и цетановому числу). Другое применение легкого газойля — снижение вязкости котельных топлив, судовое топливо и производство сажи.
Тяжелый газойль
Тяжелый газойль каталитического крекинга — это фракция, начинающая кипеть выше 270С (реже 320,350). Из-за большого содержания полициклических ароматических углеводородов эта фракция (при определенном содержании серы) является прекрасным сырьем процесса коксования с получением высококачественного игольчатого кокса. При невозможности утилизировать фракцию этим путем, её используют как компонент котельного топлива.

Источник

Adblock
detector