Определение минимальной скорости ветра для ветроэнергетической установки



Ветрогенератор своими руками: расчет винта и генератора переменного тока

Расчет ветроколеса и генератора переменного тока для домашней ВЭУ. Варианты конструктивного исполнения – опыт пользователей портала.

Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.

Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.

Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.

Из статьи вы узнаете:

  • Как правильно рассчитывать рабочий винт ветрогенератора.
  • Какие типы генераторов больше всего подходят для сборки в домашних условиях.
  • Как рассчитывать рабочие характеристики генератора переменного тока.

Расчет рабочего винта (ветроколеса)

Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.

Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.

Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.

Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.

Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.

Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:

Х = 600:0,4 = 1500 Ватт.

Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).

Источник

Особенности ветроэнергетических установок: достоинства и недостатки оборудования

Энергоснабжение регионов России распределено крайне неравномерно. Имеются энергоизбыточные регионы, обладающие большими возможностями в обеспечении регионов, есть и районы с нехваткой энергоресурсов, нуждающиеся в поставках извне. Примечателен факт, что местности без электроснабжения встречаются в обоих категориях регионов, независимо от общей обеспеченности. Поэтому населению таких пунктов приходится изыскивать способы решения вопроса своими средствами.

Наиболее частым методом решения вопроса являются дизельные электростанции, которые обходятся довольно дорого и нуждаются в постоянных поставках топлива. Расходы на обслуживание и заправку таких устройств вынуждают вести поиск альтернативных источников. В последнее время внимание потребителей все чаще бывает сосредоточено на ветрогенераторах, так как этот источник абсолютно бесплатный, присутствует повсеместно, обладает большими возможностями в сфере энергетики.

Что такое ветроэнергетические установки?

Ветроэнергетические установки представляют собой комплексы оборудования, предназначенного для выработки, подготовки и снабжения потребителей электрическим током. Поскольку ветер является бесплатным источником энергии, все расходы на выработку тока сводятся к первоначальным вложениям на приобретение (или создание) ветрогенератора и смежного оборудования и последующее обслуживание.

Если сравнивать затраты на проведение линии электропередач или кабеля до отдаленных пунктов, то экономический эффект от использования ВЭУ в большинстве случаев оказывается довольно высоким. При этом, следует учитывать большую разницу в стоимости крупных ВЭУ и небольших установок, действующих в пределах одной усадьбы.

Частой ошибкой, допускаемой при расчетах экономической выгоды от использования ВЭУ, является рассматривание лишь одного варианта реализации методики — создания локальных энергетических комплексов (ЛЭК). Они рассматриваются только как энергоустановки местного значения, обеспечивающие энергией весь населенный пункт. Отсюда возникают высокие расходы на приобретение, потребность в дорогостоящем обслуживании и материалоемкость устройства.

Частные источники, способные обеспечить энергией отдельный дом, практически не рассматриваются, из виду упускается наиболее эффективный и необходимый сектор ветрогенераторов.

Достоинства и недостатки ВЭУ

Преимуществами ВЭУ являются:

  • возможность обеспечения электроэнергией любые пункты, вне зависимости от степени удаления от магистральных линий;
  • нет необходимости создавать большую энергетическую станцию, можно использовать отдельные компактные установки;
  • готовая ВЭУ не нуждается в топливе или иных ресурсных поставках.

При этом, существуют некоторые недостатки:

  • Выработка электроэнергии производится посредством ветровых потоков и полностью зависит от их силы и равномерности. В тихую безветренную погоду производство электротока невозможно.
  • Полученный ток не годится для использования без подготовки, которая требует наличия определенных устройств.
  • Ураганные ветра или шквалистые порывы могут разрушить или вывести установку из строя.

Важно! Как достоинства, так и недостатки ВЭУ являются их специфическими характерными качествами. При отсутствии других возможностей имеющиеся недостатки попросту устраняются принятием соответствующих мер.

Единственным действительно серьезным препятствием, ограничивающим использование ветрогенераторов, является высокая стоимость промышленных установок. Создание самодельных устройств требует определенных навыков и некоторой подготовки, что также замедляет распространение ветроэнергетических устройств среди населения.

Принцип работы ветроэнергетических установок

Ветроэнергетическая установка представляет собой комплекс оборудования, в состав которого входят:

  • ветрогенератор,
  • аккумулятор,
  • инвертор,
  • коммутационное оборудование, кабель, прочие устройства.

Внимание! Имеется много вариантов конструкции ветряков, но общий состав установки практически неизменен.

Принцип действия ветроустановок основан на использовании энергии ветра. Поток воздействует на лопасти рабочего колеса, приводя их во вращение. Оно передается на генератор, производящий электроток. Генератор заряжает аккумуляторы, напряжение с которых подается на инвертор, создающий переменный ток 220 В 50 Гц, необходимый для потребителей.

Существуют отдельные ветряки, питающие насосы или иные несложные устройства, которые подают напряжение напрямую на потребляющий прибор. Но, при возникновении нештатных ситуаций, например, внезапном усилении ветра, потребитель может выйти из строя вследствие резкого скачка напряжения.

В последнее время значительно увеличился интерес к ветроэнергетике со стороны изобретателей и конструкторов. Постоянно появляются новые конструкции, которые обладают все большими возможностями. В частности, ведутся активные поиски способов увеличения КПД ветряка, и некоторые варианты имеют весьма высокие показатели по сравнению с применяющимися в настоящее время промышленными образцами ВЭУ.

Учитывая, что максимальное использование энергии ветрового потока согласно расчетам не может превышать 59,3%, а реальное использование намного ниже и составляет от 10%, то возможности для увеличения эффективности установок весьма высоки.

Особенности ветроэнергетических установок: достоинства и недостатки оборудования

Виды оборудования

Существует две группы ВЭУ, отличающиеся друг от друга положением оси вращения рабочего колеса:

    . Внешне напоминают пропеллер. . Лопасти таких устройств вращаются вокруг вертикальной оси. Имеется большое число конструкций вертикальных ветряков.

Принципиальным отличием этих двух типов конструкции является необходимость ориентирования горизонтальных устройств по направлению ветра и нетребовательность к этому вертикальных ветряков. Кроме того, для горизонтальных устройств обязательно наличие высокой мачты, так как расположение на высоте обеспечивает более интенсивное воздействие потоков ветра на ротор. Вертикальные конструкции в подъеме над уровнем земли нуждаются в меньшей степени.

При этом, эффективность горизонтальных ветряков в целом выше, чем у вертикальных устройств. Это происходит потому, что лопасти вертикальных роторов испытывают как полезное воздействие на рабочие части, так и противодействующие нагрузки на обратные стороны. Снижение уравновешивающего воздействия потока на обратные стороны лопастей является основной задачей конструкторов, пытающихся разработать наиболее удачную форму рабочего колеса.

Существуют опытные образцы, обеспечивающие высокую эффективность использования потока, но широкого производства таких устройств пока не наблюдается.

Общий состав комплекса практически одинаков и различается только типом конструкции ветряка.

Горизонтальные ветрогенераторы

Установки с горизонтальной осью вращения имеют практически одну конструкцию. Они представляют собой горизонтальную ось с хвостом и ротором на противоположных концах. Ось имеет возможность свободного вращения вокруг вертикальной оси, необходимое для установки ротора по направлению ветра. Это происходит автоматически, при помощи хвоста. Ротор представляет собой род пропеллера, вращающегося при воздействии ветрового потока на лопасти.

Принципиального различия между разными моделями горизонтальных ветряков нет. Они отличаются типом лопастей:

  • жестколопастные,
  • парусные.

Первые сделаны из прочного материала, вторые представляют собой жесткую рамку, обтянутую плотной тканью или подобным материалом. Кроме того, имеются образцы с различной формой лопасти:

  • в виде прямой лопатки;
  • в виде архимедова винта.

Имеются парусные модели, созданные для получения максимального эффекта от воздействия ветрового потока. Они не имеют вращающихся частей, поверхность паруса создает давление на поршневую систему, взаимодействующую с генератором.

Важно! Большая площадь лопастей позволяет получать больше энергии от взаимодействия с воздушным потоком, но создает значительное сопротивление ветру, опасное при возникновении шквальных порывов.

Ротор горизонтальной конструкции нуждается в установке на высокую мачту. Это увеличивает эффективность получения ветровой энергии, но осложняет процесс монтажа и обслуживания устройства. Мачта должна быть надежно закреплена и усилена растяжками, чтобы имелась возможность выдерживать ураганные порывы ветра. Высота мачты выбирается таким образом, чтобы ветряк возвышался над всеми ближайшими зданиями и сооружениями. При этом, место установки также выбирается на возвышении, что позволяет снизить высоту мачты и облегчает монтаж.

Читайте также:  Установка алмазного бурения ростов

Особенности ветроэнергетических установок: достоинства и недостатки оборудования

Вертикальные ветряки

Ветрогенераторы вертикальных конструкций имеют меньшую эффективность использования потока ветра, но с точки зрения эксплуатации они намного предпочтительнее. Их преимущества:

  • нет нужды ориентировать ротор по направлению ветра;
  • устанавливать устройство на высокую мачту необязательно, так как большой разницы в эффективности нет;
  • устройства имеют более простую конструкцию, что удобнее при самостоятельном изготовлении.

Изначально вертикальные конструкции имели две лопасти, имеющие форму желоба, расположенные диаметрально вдоль оси вращения. Впоследствии появились другие варианты, имеющие большее количество лопастей или иную форму. На сегодня различных конструкций известно довольно много. Вот некоторые из них:

    ,
  • ротор Дарье, ,
  • ортогональный,
  • геликоидный.

Работы по созданию новых типов конструкции ведутся непрерывно, поэтому привести полный перечень имеющихся конструкций невозможно.

Внимание! Вертикальные конструкции ветрогенераторов намного доступнее для самостоятельного изготовления, что явилось причиной появления большого количества вариантов конструкции.

Особенности ветроэнергетических установок: достоинства и недостатки оборудования

Особенности конструкции

Основная особенность конструкции ВЭУ — наличие подвижного ротора, передающего вращающий момент на генератор. Этот узел является наиболее ответственным во всей конструкции, требующим качественного изготовления, прочности и устойчивости к нагрузкам.

Кроме того, помимо надежности, ротор должен достаточно чутко реагировать на контакт с ветровыми потоками и начинать вращение при относительно слабых значениях. Это особенно важно, если учитывать особенности климата России, где преобладают слабые и средние ветра. Способность стартовать при малых ветрах высоко ценится у ветрогенераторов, большинство разработок создано именно для увеличения чувствительности к малым потокам.

Нестабильность и слабые скорости ветра являются основными причинами недостаточного развития ветроэнергетики в России. Расходы на альтернативные источники электроснабжения чаще всего выше, чем на традиционные методы, что объясняет малое присутствие ВЭУ. При этом, решение вопроса с помощью дизельных электростанций способствует отрицательному воздействию на окружающую среду в виде выбросов продуктов горения топлива.

Использование дармовой энергии ветра при правильно распределенных вложениях и применении наиболее эффективных конструкций способно дать немалый экономический эффект и способно решить проблему для регионов с недостаточным энергоснабжением.

Технические характеристики

К основным техническим характеристиками ВЭУ относятся:

  • номинальная мощность устройства,
  • минимальная скорость ветра, при которой происходит запуск ротора,
  • максимальная скорость ветра, при которой требуется торможение вращающейся части.

Помимо этих параметров важно определить срок окупаемости устройства, его долговечность и расходы на содержание. Эти факторы являются определяющими при выборе источника электроснабжения между дизельными станциями и ВЭУ. Для регионов со слабыми ветрами такой выбор весьма актуален, поскольку вкладываться в заведомо неэффективный комплекс нерационально и не способствует решению проблемы.

Ветроэнергетические установки являются перспективным вариантом решения проблемы энергообеспечения для отсталых регионов. При грамотном подходе и использовании оптимального комплекта оборудования, можно создавать как мелкие станции, обеспечивающие отдельные жилые дома, так и более крупные установки, способные снабжать энергией населенные пункты.

Возможность производства энергии без нанесения ущерба экологии региона должна ставиться в первоочередные задачи, и ветроэнергетика в этом отношении является наиболее удачным вариантом решения проблем.

Источник

Как произвести расчет ветрогенератора: формулы + практический пример расчета

Альтернативная энергия, получаемая от энергетических ветряных установок, вызывает в обществе высокий интерес. Подтверждений тому на уровне реальной бытовой практики множество.

Владельцы загородной недвижимости строят ветряки собственными руками и довольствуются полученным результатом, хотя эффект бывает и кратковременным. Причина – при сборке не был произведён расчёт ветрогенератора должным образом.

Согласитесь, не хотелось бы потратив время и средства на реализацию проекта, получить малоэффективную установку. Поэтому важно понять, как произвести расчет ветрогенератора, и по каким параметрам подобрать основные рабочие узлы ветряка.

Решению этих вопросов и посвящена статья. Теоретическая часть материала дополнена наглядными примерами и практичными рекомендациями по сборке ветрогенераторной установки.

Расчёт ветрогенераторной установки

С чего начать рассчитывать систему воспроизводства электроэнергии из энергии ветра? Учитывая, что речь идёт о ветрогенераторе, логичным видится предварительный анализ розы ветров в конкретной местности.

Такие расчётные параметры, как скорость ветра и характерное его направление для данной территории – это важные расчётные параметры. Ими в какой-то степени определяется тот уровень мощности ветряка, который будет реально достижим.

Расчёт мощности ветряка

Что примечательно, процесс этот носит долговременный характер (не менее 1 месяца), что вполне очевидно. Вычислить максимально вероятные параметры скорости ветра и его наиболее частое направление невозможно одним или двумя замерами.

Потребуется выполнить десятки замеров. Тем не менее, операция эта действительно необходима, если есть желание построить эффективную производительную систему.

Как вычислить мощность ветряка

Ветрогенераторам бытового назначения, тем более сделанным своими руками, удивлять народ высокими мощностями ещё не приходилось. Оно и понятно. Стоит лишь представить массивную мачту высотой 8-10 м, оснащённую генератором с размахом лопастей винта более 3 м. И это не самая мощная установка. Всего-то около 2 кВт.

Мощный промышленный ветрогенератор

Вообще, если опираться на стандартную таблицу, показывающую соотношение мощности ветрогенератора и требуемого размаха лопастей винта, есть чему удивиться. Согласно таблице, для ветряка мощностью 10 Вт необходим двухметровый пропеллер.

На 500-ваттную конструкцию потребуется уже винт диаметром 14 м. При этом параметр размаха лопастей зависит от их количества. Чем больше лопастей, тем меньше размах.

Но это всего лишь теория, обусловленная скоростью ветра, не превышающей значения 4 м/сек. На практике всё несколько иначе, а мощность установок бытового назначения, реально действующих продолжительное время, ещё никогда не превышала 500 Вт.

Поэтому выбор мощности здесь обычно ограничен диапазоном 250-500 Вт при средней скорости ветра 6-8 м/сек.

Таблица для расчёта ветряка

С теоретической позиции, мощность ветряной энергетической станции считают по формуле:

N=p*S*V 3 /2,

  • p – плотность воздушных масс;
  • S – общая обдуваемая площадь лопастей винта;
  • V – скорость воздушного потока;
  • N – мощность потока воздуха.

Так как N – параметр, кардинально влияющий на мощность ветрогенератора, то реальная мощность установки будет находиться недалеко от вычисленного значения N.

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  • крыльчатые – вращение в горизонтальной плоскости;
  • ротор Савониуса, ротор Дарье – вращение в вертикальной плоскости.

Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:

Z= L*W/60/V

  • Z – степень быстроходности (тихоходности) винта;
  • L – размер длины описываемой лопастями окружности;
  • W – скорость (частота) вращения винта;
  • V – скорость потока воздуха.

Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения.

Классический ротор Дарье

А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:

Число лопастей Степень быстроходности Скорость ветра м/с
2 5 330

Также одним из важных показателей винта ветряка является шаг.

Этот параметр можно определить, если воспользоваться формулой:

H=2πR* tg α,

  • – константа (2*3.14);
  • R – радиус, описываемый лопастью;
  • tg α – угол сечения.

Дополнительная информация о выборе формы и количества лопастей, а также инструкция по их изготовлению приведена в этой статье.

Подбор генераторов для ветряков

Имея расчётное значение числа оборотов винта (W), полученное по вышеописанной методике, можно уже подбирать (изготавливать) соответствующий генератор.

Например, при степени быстроходности Z=5, количестве лопастей равном 2 и частоте оборотов 330 об/мин. При скорости ветра 8 м/с. мощность генератора приблизительно должна составлять 300 Вт.

Генератор для ветряка

При таких параметрах подходящим выбором в качестве генератора для бытовой ветряной электростанции может стать мотор, который используется в конструкциях современных электровелосипедов. Традиционное наименование детали – веломотор (производство КНР).

Веломотор для ветрогенератора

Характеристики электрического веломотора примерно следующие:

Параметр Значения
Напряжение, В 24
Мощность, Вт 250-300
Частота вращения, об/мин. 200-250
Крутящий момент, Нм 25

Положительная особенность веломоторов в том, что их практически не нужно переделывать. Они конструктивно разрабатывались как электродвигатели с низкими оборотами и успешно могут применяться под ветрогенераторы.

Расчёт и выбор контроллера заряда

Контроллер заряда АКБ необходим для ветряной энергетической установки любого типа, включая бытовую конструкцию.

Расчёт этого устройства сводится к подбору электрической схемы прибора, которая бы соответствовала расчётным параметрам ветровой системы.

Из тих параметров основными являются:

  • номинальное и максимальное напряжение генератора;
  • максимально возможная мощность генератора;
  • максимально возможный ток заряда АКБ;
  • напряжение на АКБ;
  • температура окружающего воздуха;
  • уровень влажности окружающей среды.

Исходя из представленных параметров, ведётся сборка контроллера заряда своими руками или подбор готового устройства.

Контроллер ветрогенератора подбор

Конечно, желательно подбирать (или собирать) устройство, схема которого обеспечивала бы функцию лёгкого старта в условиях течения слабых потоков воздуха. Контроллер, рассчитанный под эксплуатацию с батареями разного напряжения (12, 24, 48 вольт) тоже лишь приветствуется.

Читайте также:  Установка столбов санкт петербург

Наконец, при расчёте (подборе) схемы контроллера, рекомендуется не забывать о присутствии такой функции, как управление инвертором.

Подбор аккумуляторной батареи для системы

На практике используются аккумуляторы разного типа и почти все вполне пригодны для использования в составе ветряной энергетической системы. Но конкретный выбор придётся делать в любом случае. В зависимости от параметров системы ветряка, подбор аккумулятора ведётся по напряжению, ёмкости, условиям заряда.

Традиционными комплектующими для домашних ветряков считаются классические кислотно-свинцовые аккумуляторы. Они показали неплохие результаты в практическом смысле. К тому же стоимость этого типа батарей более приемлема по сравнению с другими видами.

Источник

Ветроэнергетика. Ветроэнергетическая установка

Ветер — это движение воздуха относительно земной поверхности, обусловленное разностью атмосферного давления и направленное от высокого давления к низкому. Причиной неравномерного распределения давления атмосферы является неодинаковый нагрев воздуха, в основном, за счет солнечной радиации. Ветер характеризуется скоростью ( υ в ) и направлением. Скорость выражается в м/с, км/ч или приближенно в баллах по шкале Бофорта.

Ветроэнергетика — это отрасль энергетики, связанная с разработкой методов и средств, для преобразования энергии ветра в механическую, тепловую или электрическую энергию. Важной особенностью энергии ветра, как и солнечной, является то, что она может быть использована практически повсеместно.

Ветродвигатель — устройство, преобразующее кинетическую энергию ветра в механическую энергию.

Ветроэнергетическая установка (ВЭУ) представляет собой комплекс технических устройств, для преобразования энергии ветра в другие виды: механическую, электрическую или тепловую.

Ветродвигатель является неотъемлемой частью ВЭУ. В ее состав также могут входить рабочие машины (электрогенератор, тепловой генератор), аккумулирующие устройства, системы автоматического управления и регулирования и др.

Ветровая энергия представляет собой возобновляемый источник энергии, являющийся вторичным по отношению к солнечной энергии. Причиной возникновения ветра являются разности температур в атмосфере, образующиеся в результате действия солнечного излучения, которые, в свою очередь, обуславливают возникновение различных давлений. Ветер возникает в процессе рассеяния энергии, накопившейся вследствие наличия этих различных давлений.

Ветроэнергетичическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра.

Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3%. На практике максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50%, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75-95%.

Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30-40% мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом.

Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора.

Учитывая эти факторы, удельная выработка электрической энергии в течение года составляет 15-30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.

Основные технические характеристики ВЭУ

К основным техническим характеристикам ВЭУ относятся:

  • номинальная мощность;
  • номинальная (расчетная) скорость ветра;
  • минимальная скорость ветра;
  • максимальная рабочая скорость ветра;
  • номинальная частота вращения ветроколеса.

Номинальная мощность (Рн, кВт) — это мощность ВЭУ, развиваемая при скорости ветра в пределах от номинальной (расчетной) до максимальной рабочей. Значение Рн указывается изготовителем в паспорте на ветродвигатель.

Номинальная (расчетная) скорость ветра ( υ p , м/с) — скорость ветра, при которой ВЭУ развивает номинальную мощность. Для различных конструкций ветроустановок эта скорость различна.

Минимальная скорость ветра ( υ , м/с) — скорость ветра, при которой ВЭУ вступает в работу. Для тихоходных установок эта скорость не превышает 2. 3м/с, для быстроходных υ ≥7м/с.

Максимальная рабочая скорость ветра ( υ M , м/с) — скорость ветра, превышение которой может привести к разрушению ВЭУ. При υ B > υ M производят так называемое штормовое (или буревое) отключение ВЭУ. Значение υ M для различных типов ВЭУ лежит в пределах 25. 60м/с.

Зависимость выходной мощности ВЭУ от скорости ветра при регулировании скорости вращения ветроколеса

Рис.1. Зависимость выходной мощности ВЭУ от скорости ветра
при регулировании скорости вращения ветроколеса:

Рн — номинальная мощность ВЭУ;
υ — минимальная скорость ветра, при которой ВЭУ начинает отдавать энергию;
υ p — расчетная скорость ветра;
υ M — максимальная скорость ветра для работы ВЭУ

Номинальная частота вращения ветроколеса ( nнвк , об./мин) — это такая скорость вращения, при которой ВЭУ развивает номинальную мощность.

Для большинства современных ВЭУ частоту вращения ветроколеса регулируют с целью обеспечения постоянства этого параметра при изменении скорости ветра.

Виды и принцип действия ветроэлектрических установок

ВЭУ по своему назначению и виду преобразования энергии ветра в другие виды подразделяют на: ветромеханические, ветроэлектрические, ветротепловые и комбинированные (получение, например, механической и электрической энергии). Наиболее универсальны ветроэлектрические установки, по этой причине они получили наибольшее распространение.

С точки зрения автономности использования различаются ВЭУ:

  • автономные;
  • работающие с другими энергоисточниками (дизельные электростанции, фотоэлектрические установки и др.);
  • работающие в составе энергосистемы электроснабжения.

Автономные ВЭУ могут использоваться в качестве источника энергоснабжения, и в первую очередь — электроснабжения объектов, удаленных от ЛЭП (линии электропередач), газопроводов и других коммуникаций.

Учитывая непостоянство скорости ветра, а зачастую и его отсутствие, для непрерывного энергоснабжения в составе таких ВЭУ необходимо иметь аккумуляторы того вида энергии, который производится с помощью данной установки.

Так, для ветроэлектрических установок необходимо иметь электрический аккумулятор, способный обеспечить бесперебойное поступление электроэнергии на объект не менее 2-х суток.

ВЭУ, работающие с другими энергоисточниками, позволяют наилучшим образом выполнять задачу непрерывного энергоснабжения любых объектов. Благодаря наличию дизель-генератора, фотоэлектрической станции, мини-ТЭЦ или небольшой ГЭС имеется возможность исключить потребность в аккумулировании энергии, производимой ВЭУ. При этом за счет использования ВЭУ обеспечивается экономия традиционного топлива.

При работе ВЭУ в составе энергосистемы также обеспечивается полное использование энергетического потенциала этой установки и экономия других ТЭР, потребляемых электростанциями, которые питают энергосистему.

Основным рабочим органом ветродвигателя ВЭУ является ветроколесо, принимающее на себя энергию ветра и преобразующее ее в механическую энергию своего вращения. Оно вращается за счет аэродинамических сил, возникающих при взаимодействии ветрового потока и лопастей. Различают быстроходные и тихоходные ветроколеса. Быстроходное ветроколесо имеет небольшое число лопастей, обычно две или три.

Взаимодействие ветрового потока и лопастей показано на рис.2.

Плоскость вращения ветроколеса

Рис.2. Плоскость вращения ветроколеса

Векторная диаграмма сил и скоростей в сечении лопасти быстроходного ветроколеса:

  • υв — скорость ветра;
  • ωR — окружная скорость сечения лопасти;
  • υп — скорость набегающего потока;
  • R — радиус вращения сечения лопасти;
  • φ — угол установки лопасти;
  • а — угол атаки;
  • Fa — полная аэродинамическая сила;
  • Fn — подъемная сила;
  • Fc — сила лобового сопротивления.

Для сечения лопасти, удаленного от центра вращения на расстояние R (радиус вращения), при угловой скорости вращения ω линейная скорость кругового движения (окружная скорость) сечения будет равна ωR.

Вектор этой скорости расположен в плоскости вращения ветроколеса. Для данного сечения воздушный поток набегает с относительной скоростью υ п , которая будет превышать скорость ветра υ в , так как она складывается (векторно) из υ в и окружной скорости ωR.

Возникающая аэродинамическая сила Fa раскладывается на подъемную — Fп, создающую вращающий момент в направлении вектора окружной скорости ωR, и на силу лобового сопротивления Fc, действующую против направления вращения лопасти. Меняя угол установки лопасти φ путем ее поворота, можно изменять величину и направление векторов сил, действующих на лопасть.

Этим достигается регулирование частоты вращения ветроколеса, ограничение его мощности, а также пуск и остановка ветродвигателя.

Мощность (кВт), развиваемая на валу ветроколеса, приближенно можно определить по формуле:

  • р — плотность воздуха, кг/м 3 ;
  • υ в — скорость ветра, м/с;
  • D — диаметр ветроколеса, м;
  • Кисп — коэффициент использования энергии ветра.

Предельное значение Кисп для быстроходного идеального ветроколеса определено русским ученым Н.Е.Жуковским и равно 0,593.

Из формулы видно, что Рвк пропорциональна υ в 3 , что и определяет необходимость регулирования скорости вращения ветроколеса для обеспечения постоянства развиваемой мощности.

Тихоходное ветроколесо конструктивно может быть выполнено в виде лопастных колес, с числом лопастей от 6 и более. Кроме того, имеются разработки тихоходных ветродвигателей карусельного, барабанного, парусного типов и др.

Значение Кисп для многолопастных ветроколес не превышает 0,38, для карусельного ветродвигателя — меньше 0,18.

Особенностью всех тихоходных ветродвигателей является то, что они при небольшой скорости вращения развивают большой вращательный момент.

Регулирование частоты вращения и ограничение мощности достигается путем поворота оси вращения ветроколеса от направления ветра, уменьшением площади рабочих поверхностей ветроколеса и др.

Читайте также:  Установка парктроника аккорд 8

В зависимости от ориентации оси вращения рабочего органа (ветроколеса, ротора и др.) ветродвигатели делятся на горизонтально — и вертикально-осевые.

Горизонтально-осевые — это такие, у которых ось вращения ветроколеса расположена вдоль направления ветрового потока. Для нормальной работы такие ветродвигатели требуют установки плоскости вращения ветроколеса перпендикулярно вектору скорости ветра.

Вертикально-осевые имеют ось вращения рабочего органа, расположенную вертикально относительно горизонтальной плоскости. Для таких устройств не требуется установка на ветер.

Ветровые машины на службе человека

Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть.

Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции, преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину — генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие — на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

При планировании ВЭУ особое внимание надо уделить на углы поворота лопасти, от которого зависит подача ветра в генератор. Угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии.

Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Конструкция лопастных ВЭУ роторной схемы обеспечивает максимальную скорость вращения при запуске и ее автоматическое саморегулирование в процессе работы. С увеличением нагрузки скорость вращения ветроколеса уменьшается, а вращающий момент возрастает.

Высота мачты имеет существенное значение для ветроэлектрических установок. Уже на высоте 9 м скорость ветра, как правило, на 15—25% больше, чем в 1,5 м от земли, а даже небольшой прирост средней силы ветра позволяет получить от станции намного больше электроэнергии.

По оценке ученых, существующие способы преобразования ветроэнергии в электрическую с помощью традиционных лопастных ветроэнергетических установок (ВЭУ) пока экономически неоправданны. Во-первых, из-за высокой пусковой скорости ветра (4-5 м/сек), высокой номинальной скорости (8-15 м/сек) и небольшой годовой производительности в условиях слабых континентальных ветров — 3-5 м/сек; во-вторых, стоимость ВЭУ составляет $1000-$1500 на кВт установленной мощности. Поэтому будущее ветроэлектрических станций зависит в первую очередь от затрат на их сооружение.

Как хранить энергию ветра

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра?

Существует несколько способов сохранения энергии:

  • Простейший способ – ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока.
  • Другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива.
  • Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Решающим фактором, который определит, значителен ли будет вклад ветровой энергии в удовлетворение потребностей человечества в энергии, является возможность создания соответствующей технологии. Он связан в основном с национальной энергетической политикой, затратами и приемлемостью таких установок для населения.

Разрабатываются также ветроэнергетические установки единичной мощностью в диапазоне от 100 Вт до 5 МВт, предназначенные для выработки электроэнергии в составе существующих энергетических систем. В дополнение к традиционным направлениям освоения ветровой энергии обсуждался ряд других возможностей ее использования, а именно:

Источник

Оценка скорости ветра для ветроустановок

Перед тем как производить расчет ветроустановки и выбирать место ее установки необходимо провести исследование скорости ветра и его направление. Зачем это нужно? Это мы и рассмотрим в этой статье.

В чем важность скорости ветра?

Самым важным фактором влияющим на количество электроэнергии, выработанной ветряком, есть скорость ветра. С увеличением скорости ветра, количество выработанной им электрической энергии возрастет кубически. Это значит, что при возрастании скорости ветра вдвое, то количество кинетической энергии, полученной ротором увеличится в восемь раз.

Формула для расчета количества энергии (Вт/м 2 ):

Где: S – площадь, на которую нажимает воздушный поток;

P – плотность воздуха, выраженная в кг/м 3

V – скорость ветра, выраженная в м/с

Ниже приведена таблица энергии ветра при стандартных условиях (плотность 1,225 кг/м 3 , сухой воздух, атмосферное давление 760 мм рт. столба):

Факторы, которые следует учесть при измерении скорости ветра

Нужно учитывать, что на скорость ветра оказывают влияние следующие факторы.

Высота над уровнем моря

Чем ближе к земле, тем слабее ветер. Это вызвано тем, что ветер будет замедлятся за счет трения о земную поверхность. На пустынных территория, а также на сельхоз полях при увеличении высоты в два раза скорость ветра возрастет примерно на 12%.

Время года

Не последнюю роль в таких процессах играет также и время года. В некоторых регионах скорости ветров в летнее и зимнее время существенно отличаются, причем зимой скорость воздушных потоков выше, чем летом. Изменения скорости днем наблюдают, как правило, поблизости морей и крупных озер. Это вызвано тем, что утром солнце нагревает воду медленней, чем землю и воздушный поток направлен в сторону побережья. Вечером же вода остывает медленнее чем земля, и поток воздуха направлен в обратную сторону (от побережья).

Характер земной поверхности

Превосходным местом для установки ветряка считаются холмы или горные хребты расположенные на открытом ландшафте. Скорость ветра на холме будет больше, чем на окружающей ее равнинной территории. Но при этом необходимо учесть, что ветер может изменять свое направление до достижения холма. Это может быть вызвано тем, что область высокого давления расширяется на некотором расстоянии перед холмом. Также нужно учесть влияние турбулентности, ее значение может довольно резко увеличится в случае неровностей холма или его большой крутизны, что может обнулить все преимущества данной возвышенности в области скорости воздушного потока. Примеры хороших и плохих размещений показаны ниже:

Определение средней скорости ветра на участке

Данные из сети интернет

Пожалуй, самым простым способом получения таких данных будет интернет. Там есть сайты, которые могут предоставить вам такие данные практически для любой точки мира.

Данные из аэропорта или метеослужб

Также можно обратится с просьбой предоставить вам метеоданные в местную метеослужбу либо аэропорт. При этом нужно учесть, что в предоставляемых данных есть особенности, которые тоже нужно учесть.

А именно: усредненные данные – для удобства использования данных метеослужбы довольно часто округляют полученную информацию за определенные промежутки времени, что не даст вам полной картины изменений ветров в зависимости от времени суток или сезонности.

Также не всегда доступные данные именно по вашему участку. Поскольку значительные расхождения в скорости ветра можно получить при сдвиге приборов на 30-50 м в сторону, не говоря уже о расстояниях 1, 2, 5 км. Большую роль сыграет разница ландшафтов на вашем участке и участке, где находится метеослужба.

Немалую роль играет и высота замера ветра, поскольку в тех данных, что предоставляет метеослужба, замеры ведутся, как правило, на высоте 10 метров над землей. А как упоминалось выше, скорость ветра зависит от высоты.

Самостоятельный замер скорости ветра

Такой подход самый желанный, но не самый реализуемый. Главным достоинством такого способа есть то, что он самый объективный. При проведении замеров можно установить датчики на необходимую высоту, установить несколько портативных метеостанций в самых разных точках измеряемого участка, чтоб получить данные о самом благоприятном месте для монтажа ветроустановки.

Недостатком такого способа есть то, что установка портативной метеостанции необходима на довольно длительный срок (не менее одного месяца), а в идеальном варианте – не менее года. Это обусловлено сезонностью ветров. Измерение за короткий промежуток времени может не дать объективных данных, следствием чего станут значительные убытки.

Немаловажным фактором является и стоимость проведения работ по замерам. Как правило, стоимость проведения замеров вам обойдется дороже, чем данные метеослужб. Поэтому необходимо тщательно подойти к определению скорости воздушного потока на вашем участке, во избежание лишних финансовых затрат, а также снижения срока окупаемости устройства.

Источник

Adblock
detector