Оператор установки элоу авт

Оператор технологической установки

Ведение технологических процессов на комбинированной установке переработке нефти высшей категории (ЭЛОУ-АВТ-6, риформинг 1000 с КЦА, гидроочистка дизельного топлива с блоком депарафинизации, газофракционирование, регенерация МДЭА, каталитический крекинг). Управление работой оборудования и регулирование технологического режима по показаниям КИПиА, контроль за соблюдением параметров технологического процесса. Обеспечение синхронности работы всех технологических секций /блоков установки. Выявление, анализ допущенных отклонений от заданных режимов и руководство работой по их своевременной ликвидации.

Высшее техническое образование по направлениям — Химическая технология органических веществ, химическая технология и биотехнология, химическая технология природных энергоносителей и углеродных материалов. Знание технологических процессов установки. Знание назначения, устройства, принципов работы и правил эксплуатации обслуживаемого оборудования, КИП, АСУТП, сигнализации и блокировок. Знание физико-химических свойства сырья, реагентов, получаемых продуктов. Обязательно успешное прохождение тестов "Понимание механических принципов" и "Следование инструкциям" (не ниже среднего уровня). Опыт работы/стажировки на должностях обслуживающего персонала в области нефтепереработки или нефтехимии будет Вашим преимуществом.

Работа в стабильной, динамично развивающейся компании Перспектива профессионального роста Расширенный социальный пакет (ДМС, страхование жизни, единовременные выплаты к отпуску) Бонус по результатам деятельности Уровень оплаты труда обсуждается по итогам собеседования

Источник



Новое поколение оборудования. Комплекс ЭЛОУ-АВТ на Омском НПЗ

Омский нефтеперерабатывающий завод – дочернее предприятие «Газпром нефти» – один из самых современных нефтеперерабатывающих предприятий России. Можно ли работать еще эффективнее?

Омский нефтеперерабатывающий завод – дочернее предприятие «Газпром нефти» – один из самых современных нефтеперерабатывающих предприятий России. Более того, ОНПЗ – лидер отрасли по эффективности производства: глубина переработки нефти на предприятии составляет 90,6 %, а выход светлых нефтепродуктов экологического класса «Евро-5» – свыше 70 %. Можно ли работать еще эффективнее? Да, и совсем скоро, ведь на Омском НПЗ полным ходом идет реализация второго этапа модернизации, одним из ключевых проектов которого является строительство комплекса первичной переработки ЭЛОУ-АВТ.

Модернизация на Омском НПЗ началась в далеком 2008 году. Фактически она предполагала строительство нового предприятия и технологического лидера отрасли, и за прошедшие годы на предприятии уже удалось сделать немало. В рамках первого этапа модернизации, который уже завершился в 2015 году, были построены и реконструированы ключевые технологические комплексы, позволившие ОНПЗ полностью перейти на выпуск моторных топлив «Евро-5», значительно повысить энергоэффективность и снизить воздействие производства на окружающую среду на 36 %.

Теперь на заводе реализуются проекты второго этапа модернизации, цель которых – рост ключевых показателей эффективности нефтепереработки до уровня мировых отраслевых лидеров в 97 %. На Омском НПЗ будут построены новые производственные объекты и реконструированы действующие установки с учетом современных требований к экологии, уровню надежности и безопасности производственных процессов. Кроме того, воздействие предприятия на окружающую среду дополнительно снизится на 28 %.

Одним из ключевых проектов текущего этапа модернизации, наряду со строительством комплекса глубокой переработки нефти (КГПН) и установки замедленного коксования (УЗК), стало возведение комплекса первичной переработки нефти ЭЛОУ-АВТ, введение которого в эксплуатацию позволит вывести из эксплуатации сразу 6 установок первичной переработки нефти предыдущего поколения.

Напомним, что первичная переработка предполагает разделение прошедших предварительную подготовку нефти и газов на отдельные углеводородные фракции. Такая перегонка позволяет получить целый спектр нефтепродуктов и полуфабрикатов, таких как газ (бутан, пропан), бензиновые фракции, дизельное топливо, смазочные масла, мазут и т.д.

Строительство комплекса первичной переработки началось в 2016 году, сразу после получения разрешения на строительство от Главгосэкспертизы РФ. Согласно проекту, в состав нового комплекса ЭЛОУ-АВТ войдут 6 секций, в том числе отдельный блок по переработке стабильного газового конденсата (СГК) мощностью 1,2 млн тонн в год. Это в конечном счете позволит увеличить объем переработки СГК и вовлечь дополнительные объемы конденсата в выпуск бензина и дизельного топлива стандарта «Евро-5», а также авиакеросина.

Контракты на поставку оборудования длительного цикла изготовления (ректификационных колонн, компрессоров, печей) были подписаны с крупнейшими производителями нефтегазового оборудования, в том числе «Волгограднефтемашем» и компанией «АЭМ-технологии» (входит в машиностроительный дивизион государственной корпорации «Росатом»).

Так, две колонны, предназначенные для атмосферной и вакуумной перегонки нефти, были изготовлены вышеперечисленными компаниями в Волгограде и Волгодонске, причем производство заняло более двух лет! У оборудования нет аналогов в России, а общая масса смонтированных колонн превышает 1 тыс. тонн. Они увеличат глубину переработки нефти и выход светлых нефтепродуктов на Омском НПЗ.

Кроме того, в проекте комплекса ЭЛОУ-АВТ применен ряд передовых экологических решений. Например, непрерывный мониторинг дымовых газов технологических печей и очистка газовых фракций от серосодержащих соединений, а предусмотренная проектом закрытая система дренирования оборудования позволит повторно направлять извлекаемые нефтепродукты в переработку, снижая выпуск мазута.

ЭЛОУ-АВТ также будет отвечать современным требованиям промышленной безопасности за счет автоматизации процессов, оснащения объекта системами оповещения, сигнализации, видеонаблюдения и громкоговорящей связи.

Общая мощность ЭЛОУ-АВТ – 8,4 млн тонн в год, он станет одним из крупнейших комплексов такого типа в России. Ввод новой установки в эксплуатацию позволит создать стабильную сырьевую базу для проектов завода, направленных на увеличение глубины переработки нефти, поддержать объем переработки на уровне, заданном стратегией развития «Газпром нефти», а также свести воздействие нефтеперерабатывающего производства на окружающую среду к минимуму.

Планируется, что ЭЛОУ-АВТ будет введена в эксплуатацию к началу 2019 года, после чего 6 установок первичной переработки нефти предыдущего поколения будут выведены из технологической цепочки и демонтированы.

Читайте также:  Установка бельевой сушилки владикавказ

Нельзя не упомянуть о создании на Омском НПЗ инфраструктуры, которая обеспечит функционирование установки первичной переработки нефти ЭЛОУ-АВТ, комплекса глубокой переработки нефти и установки замедленного коксования. В настоящее время строительство идет полным ходом на территории, превышающей 150 гектаров.

Проект инфраструктуры включает в себя возведение систем электро- и энергоснабжения, строительство локального блока оборотного водоснабжения и факельной системы, возведение межцеховых коммуникаций и трубопроводов снабжения азотом и техническим воздухом. Также будет построен комплекс химической очистки воды с применением ионообменной технологии, который позволит значительно снизить расход потребляемых водных ресурсов, сократить количество технических стоков и оптимизировать энергозатраты. Кроме того, предполагается реконструкция главной понизительной подстанции, мощность которой после ввода в эксплуатацию вырастет в 1,5 раза и составит 126 МВт. Станция не только покроет потребности новых производственных комплексов, но и позволит перераспределить электроэнергию на действующие промышленные объекты ОНПЗ.

Суммарные инвестиции «Газпром нефти» в модернизацию ОНПЗ превысят 300 млрд рублей. Деньги огромные, но вложены не зря, ведь за счет совершенствования производственных процессов, внедрения инноваций и новых технологий Омский НПЗ заслуженно встанет в один ряд с мировыми лидерами отрасли.

8,4 млн т/год общая мощность комплекса первичной переработки нефти ЭЛОУ-АВТ на Омском НПЗ;

6 установок предыдущего поколения будут выведены из эксплуатации после запуска комплекса ЭЛОУ-АВТ;

1 тыс. т общая масса колонн атмосферной и вакуумной перегонки нефти, которые войдут в комплекс ЭЛОУ-АВТ на ОНПЗ;

Источник

Технологическая схема установки ЭЛОУ — АВТ

Технологическая схема установки приведена на рис. В прёдварительный испаритель — колонну 1 поступает обезвоженная нефть 1 после четырех пар горизонтальных электродегидраторов (на схеме не показаны), нагретая в теплообменниках до 210° С. Сверху этой колонны отходит легкая (до 140° С) бензиновая фракция с углеводородными газами и сероводородом. В нижнюю часть колонны 1 подается горячая струя, благодаря которой здесь поддерживается температура 240 °С при избыточном давлении З am. Кратность орошения 1,5 : 1. В колонне имеется 24 тарелки S-образного типа. Пары головного продукта через конденсатор-холодильник 2 поступают в емкость 9. Часть этого конденсата возвращается в колонну на орошение, а избыток перетекает в промежуточную емкость 10. Частично отбензиненная нефть из колонны 1 насосом прокачивается через змеевик печи 11 в колонну 1 как горячая струя.

Балансовый избыток из этой колонны другим насосом подается через другую секцию атмосферной печи 11 в основную атмосферную колонну 3, оборудованную 40 тарелками S-образного типа, Головным продуктом этой колонны является фракция н. к. — 180° С. Боковыми погонами являются фракции 180—240 и 240—350° С. В отпарных колоннах 4 с 10 тарелками провального типа в каждой дистилляты обрабатываются водяным паром, дистилляты 140—180 и 180—220 °С через теплообменники и холодильники (на схеме во показаны откачиваются на выщелачивание и промывку водой, а затем в емкость готового продукта. Снизу колонны 3 отбирается мазут ХI.

Головной продукт колонны 3, пройдя конденсатор-холодильник 2, поступает в емкость 9, откуда перекачивается в емкость бензина 10, где смешивается с головным продуктом колонны 1. Смесь головных продуктов обеих колонн через теплообменник подается на стабилизацию в колонну 5 (число тарелок 60). Стабилизация протекает под давлением 8 am.

Головной продукт III из стабилизатора 5 поступает через конденсатор-холодильник 2 в емкость 9, откуда часть конденсата насосом возвращается в колонну как орошение, остальное передается на ГФУ, а газ — к форсункам печей. Стабильный продукт частично прокачивается через змеевик печи 12 обратно в стабилизатор как теплоноситель, а избыток передается на вторичную перегонку в колонны 6, 7 и 8. Колонна 8 оборудована отпарной колонной 4. В стабилизаторе 5, как и в колоннах вторичной перегонки, теплоносителем являются циркулирующие через печь 12 остатки ректификационных колонн 6, 7 и 8. Головным продуктом колонны 8 является фракция 85—120 °С, остатком — фракция 140—180° С.

Ниже сопоставлены технико-экономические показатели установок АТ-6 и АТ-З:

Как видно из этих данных, при увеличении мощности установок прямой перегонки нефти с 3 до б млн. т/год удельные капиталовложения снижаются на 25%, расход металла на 47%, производительность труда повышается более чем в 1,6 раза.

Установка ЭЛОУ — АВТ-6 производительностью б млн. т/год осуществляет процессы обезвоживания и обессоливания нефти, ее атмосферно-вакуумную перегонку и вторичную перегонку бензина. Схема этой установки представлена на рис. 198.

Исходная нефть после смещения с деэмульгатором, нагретая в теплообменниках 1, четырьмя параллельными потоками проходит через две ступени горизонтальных электродегидраторов 2, где осуществляется и обессоливание. Далее нефть после дополнительного нагрева в теплообменниках направляется в отбензинивающую колонну 3. Тепло вниз этой колонны подводится горячей струей ХV, циркулирующей через печь 4.

Частично отбензиненная нефть ХIV из колонны З после нагрева в печи 4 направляется в основную колонну 5, где осуществляется ректификация с получением паров бензина сверху колонны, трех боковых дистилляторов VIII‚ IХ и Х из отпарных колонн б и мазута ХVI снизу колонны.

Отвод тепла в колонне осуществляется верхним испаряющимся орошением и двумя промежуточными циркуляционными орошениями. Смесь бензиновых фракций ХVIII из колонн 3 и 5 направляется на стабилизацию в колонну 8, где сверху отбираются легкие головные фракции (жидкая головка), а снизу — стабильный бензин ХIХ. Последний в колоннах 9 подвергается вторичной перегонке с получением узких фракций, используемых в качестве сырья для каталитического риформинга. Тепло вниз стабилизатора 8 и колонн вторичной перегонки 9 подводится циркулирующими флегмами ХV, нагреваемыми в печи 14.

Читайте также:  Установка датчика температуры процессора

Мазут ХVI из основной колонны 5 атмосферной секции насосом подается в вакуумную печь 15, откуда с температурой 420 ºС направляется в вакуумную, колонну 10. В нижнюю часть этой колонны подается перегретый водяной пар ХVII. Сверху колонны водяной пар вместе с газообразными продуктами разложения поступает в поверхностные конденсаторы 11, откуда газы разложения отсасываются в трехступенчатыми пароэжекторными вакуумными насосами. Остаточное давление в колонне 50 мм.рт.ст. Боковым погоном вакуумной колонны служат фракции ХI и ХII, которые насосом через теплообменник и холодильник направляются в емкости. В трех сечениях вакуумной колонны организовано промежуточное циркуляционное орошение. Гудрон ХIII снизу вакуумной колонны откачивается насосом через теплообменник 1 и холодильник в резервуары.

Аппаратура и оборудование АВТ-6 занимают площадку 265 × 130 м, или 3,4 га. В здании размещены: подстанция, насосная для перекачки воды и компрессорная. Блок ректификационной аппаратуры примыкает к одноярусному железобетонному постаменту, на котором, как и на описанной выше установке АТ-6, установлена конденсационно-холодильная аппаратура и промежуточные емкости. Под первым ярусом постамента расположены насосы технологического назначения для перекачки нефтепродуктов. В качестве огневых нагревателей мазута, нефти и циркулирующей флегмы применены многосекционные печи общей тепловой мощностью около 160 млн. ккал/ч с прямым сводом, горизонтальным расположением радиантных труб двухстороннего облучения и нижней конвекционной шахтой. Печи потребляют жидкое топливо, сжигаемое в форсунках с воздушным распылом. Предусмотрена возможность использования в качестве топлива газа. Ниже приведены технико-экономические показатели установок АВТ различной производительности (на 1 т нефти):

Из приведенных данных следует, что повышение мощности установок не только сокращает их число на нефтеперерабатывающих заводах, во и снижает эксплуатационные расходы и капиталовложения, повышает производительность труда.

Композиционный материал (композит) — это материал, в котором наряду с основным вещество содержатся упрочняющие или модифицирующие компоненты.

В состав композита входят: связующее вещество (обычно полимер), наполнитель, пластификаторы, свето- и термостабилизаторы, красители и т.п.

Прочность полимерных композиций, содержащих наполнитель обусловлена дополнительными силами, связывающими наполнитель с полимером за счет адгезии (прилипания).

Вот некоторые примеры наполнителей в композитах:

ткань в текстолите,

бумага в гетинаксе,

стеклоткань и стекловолокно в стеклопластиках,

металлы (порошок или нити) в металлополимерах,

взрывчатые вещества (порох) в твердом ракетном топливе,

нитевидные монокристаллы Аl2O3 карбидов кремния и бора, графита и т.д. в особо прочных материалах для космической техники.

Композиционные материалы, представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом эффективно используются индивидуальные свойства составляющих композиции. По характеру структуры К. м. подразделяются на волокнистые, упрочнённые непрерывными волокнами и нитевидными кристаллами, дисперсноупрочнённые материалы, полученные путём введения в металлическую матрицу дисперсных частиц упрочнителей, слоистые материалы, созданные путем прессования или прокатки разнородных материалов. К. К. м. также относятся сплавы с направленной кристаллизацией эвтектических структур. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Волокнистые К. м., армированные нитевидными кристаллами и непрерывными волокнами тугоплавких соединений и элементов (SiC, Аl2O3, бор, углерод и др.) являются новым классом материалов. Однако принципы армирования для упрочнения известны в технике с глубокой древности. Еще в Вавилоне использовали тростник для армирования глины при постройке жилищ, а в древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прообразом К. м. являются широко известный железобетон, представляющий собой сочетание бетона, работающего на сжатие, и стальной арматуры, работающей на растяжение, а также полученные в 19 в. прокаткой слоистые материалы.

Успешном развитию современных К. м. содействовали: разработка и применение в конструкциях волокнистых стеклопластиков, обладающих высокой удельной прочностью (1940—50); открытие весьма высокой прочности, приближающейся к теоретической, нитевидных кристаллов и доказательства возможности использования их для упрочнения металлических и неметаллических материалов (1950—60); разработка новых армирующих материалов — высокопрочных и высокомодульных непрерывных волокон бора, углерода, А12О3, SiС и волокон других неорганических тугоплавких соединений, а также упрочнителей на основе металлов (1960—70).

В технике широкое распространение получили волокнистые К. м., армированные высокопрочными и высокомодульными непрерывными волокнами, в которых армирующие элементы несут основную нагрузку, тогда как матрица передаёт напряжения волокнам. Волокнистые К. м.. как правило, анизотропны. Механические свойства их определяются не только свойствами самих волокон, но и их ориентацией, объёмным содержанием, способностью матрицы передавать волокнам приложенную нагрузку и др. Диаметр непрерывных волокон углерода, бора, а также тугоплавких соединений (В4С, SiС и др.) обычно составляет 100—150 мкм.

Волокнистые К. м., в отличие от монолитных сплавов, обладают высокой усталостной прочностью s-1. Так, например, s-1 (база 107 циклов) алюминиевых сплавов составляет 130—150 Мн/м 2 (13—15 кгс/мм 2 ), в то время как у армированного борным волокном алюминиевого К. м. около 500 Мн/м 2 (при той же базе). Предел прочности и модуль упругости К. м. на основе алюминия, армированного борным волокном, примерно в 2 раза больше, чем у алюминиевых сплавов В-95 и АК4-1.

Читайте также:  Стим установка обновления долго

Важнейшими технологическими методами изготовления К. м. являются: пропитка армирующих волокон матричным материалом; формование в пресс-форме лент упрочнителя и матрицы, получаемых намоткой; холодное прессование обоих компонентов с последующим спеканием, электрохимическое нанесение покрытий на волокна с последующим прессованием; осаждение матрицы плазменным напылением на упрочнитель с последующим обжатием; пакетная диффузионная сварка монослойных лент компонентов; совместная прокатка армирующих элементов с матрицей и другие.

Табл. — Механические свойства волокнистых композиционных материалов с непрерывными волокнами.

Табл. .— Свойства нитевидных кристаллов и непрерывных волокон.

В узлах конструкций, требующих наибольшего упрочнения, армирующие волокна располагаются по направлению приложенной нагрузки. Цилиндрические изделия и другие тела вращения (например, сосуды высокого давления) армируют волокнами, ориентируя их в продольном и поперечном направлениях. Увеличение прочности и надежности в работе цилиндрических корпусов, а также уменьшение их массы достигается внешним армированием узлов конструкций высокопрочными и высокомодульными волокнами, что позволяет повысить в 1,5—2 раза удельную, конструктивную прочность по сравнению с цельнометаллическими корпусами. Упрочнение материалов волокнами из тугоплавких веществ значительно повышает их жаропрочность. Например. армирование никелевого сплава вольфрамовым волокном (проволокой) позволяет повысить его жаропрочность при 1100 °С в 2 раза.

Весьма перспективны К. м., армированные нитевидными кристаллами (усами) керамических, полимерных и др. материалов. Размеры усов обычно составляют от долей до нескольких мкм по диаметру и примерно 10—15 мм по длине.

Разрабатываются К. м. со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие. Свойства К. м. на основе алюминия и магния (прочность, модуль упругости, усталостная и длительная прочность) более чем в 2 раза (до 500 °С) выше, чем обычных сплавов К. м. на никелевой и кобальтовой основах увеличивают уровень рабочих от 1000 до 1200 °С, а на основе тугоплавких металлов и соединений — до 1500—2000 °С. Повышение прочностных и упругих свойств материалов позволяет существенно облегчить конструкции, а увеличение рабочих температур этих материалов даёт возможность повысить мощность двигателей, машин и агрегатов.

Области применения К. м. многочисленны; кроме авиационно-космической, ракетной и других специальных отраслей техники, они могут быть успешно применены в энергетическом турбостроении, в автомобильной промышленности — для деталей двигателей и кузовов автомашин; в машиностроении для корпусов и деталей машин: в горнорудной промышленности для бурового инструмента, буровых машин и др.; в металл промышленности — в качестве огнеупорных материалов для футеровки печей, кожухов и другой арматуры печей, наконечников термопар в строительстве для пролётов мостов, опор мостовых ферм, панелей ля высотных сборных сооружений и др.; в химической промышленности – для автоклавов, цистерн, аппаратов сернокислотного производства, ёмкостей для хранения и перевозки нефтепродуктов и др.; в текстильной промышленности – для деталей прядильных машин, ткацких станков и др.; в сельскохозяйственном машиностроении для режущих частей плугов, дисковых косилок, деталей тракторов и др.; в бытовой технике — для деталей стиральных машин, рам гоночных велосипедов, деталей радиоаппаратуры и др.

Применение К. м. в ряде случаев потребует создания новых методов изготовления деталей и изменения принципов конструирования деталей и узлов конструкций.

Источник

На «ТАНЕКО» состоялась церемония запуска установки ЭЛОУ-АВТ-6

На «ТАНЕКО» состоялась церемония запуска установки ЭЛОУ-АВТ-6

На нижнекамском нефтеперерабатывающем комплексе «Татнефти» состоялась торжественная церемония запуска установки ЭЛОУ-АВТ-6, в которой с помощью видеосвязи приняли участие Премьер-министр Российской Федерации Дмитрий Медведев и Президент Республики Татарстан Рустам Минниханов.

Мероприятие состоялось 22 августа на площадке «ТАНЕКО». Генеральный директор ПАО «Татнефть» Наиль Маганов рассказал собравшимся о стратегии развития «ТАНЕКО», в реализацию которого «Татнефть» инвестировала более 384 млрд рублей.

Наиль Маганов отметил, что комплекс «ТАНЕКО» обеспечил синергетический эффект во многих отраслях российской промышленности. В строительстве ЭЛОУ-АВТ-6 участвовали только российские инжиниринг, технологическое оборудование, строительные компании под кураторством Управления по реализации проектов строительства ПАО «Татнефть». Технологии «ТАНЕКО» позволил довести максимальную глубину переработки до 99 %.

В свою очередь, Дмитрий Медведев отметил, что «ТАНЕКО» существенно нарастил линейку выпускаемой продукции и продолжает многое делать для обеспечения энергетической безопасности страны и стабилизации рыночных цен на нефтепродукты.


Справка:

«Татнефть» – одна из крупнейших российских нефтяных компаний, международно-признанный вертикально-интегрированный холдинг. В составе производственного комплекса Компании стабильно развиваются нефтегазодобыча, нефтепереработка, нефтехимия, шинный комплекс и сеть АЗС. Татнефть также участвует в капитале компаний финансового (банковского и страхового) сектора.

Существенным ресурсным активом ПАО «Татнефть» и перспективным объектом наращивания добычи являются значительные запасы сверхвязкой нефти (СВН). Проект освоения месторождений СВН развивается при поддержке государственных органов, научных организаций России и Республики Татарстан.

Успешно осуществляется стратегическая программа развития сети автозаправочных комплексов и станций Компании. В настоящее время в составе группы компаний ПАО «Татнефть» функционируют более 690 АЗС.

Накопленный финансовый потенциал ПАО «Татнефть» позволяет сегодня осуществлять крупные инвестиционные проекты как за счет собственных, так и заемных средств, сохраняя на высоком уровне финансовую устойчивость и ликвидность.

Источник

Adblock
detector